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Abstract—An increasing attention has been recently devoted to 
uncovering community structure in directed graphs which 
widely exist in real-world complex networks such as social 
networks, citation networks, World Wide Web, email networks, 
etc. A two-stage framework for detecting clusters is an effective 
way for clustering directed graphs while the first stage is to 
symmetrize the directed graph using some similarity measures. 
Any state-of-the-art clustering algorithms for undirected 
graphs can be leveraged in the second stage. Hence, both stages 
are important to the effectiveness of the clustering result. 
However, existing symmetrization methods only consider 
about the direction of edges but ignore the weights of nodes. In 
this paper, we first attempt to connect link analysis in directed 
graph clustering. This connection not only takes into 
consideration the directionality of edges but also uses node 
ranking scores such as authority and hub score to explicitly 
capture in-link and out-link similarity. We also demonstrate 
the generality of our proposed method by showing that existing 
state-of-the-art symmetrization methods can be derived from 
our method. Empirical validation shows that our method can 
find communities effectively in real world networks.  

Keywords-clustering; directed graph; graph transformations; 
community detection 

I.  INTRODUCTION 

Many complex networks display community structure 
which reveals natural or underlying relationships between 
objects or nodes. Community structure is considered to be an 
important factor in understanding the dynamics and 
functions of complex networks [1]. Hence, finding 
community detection approaches or algorithms becomes an 
important topic which has attracted considerable attention 
from various fields like computer science, physics, etc. 

Finding community structure in networks or community 
discovery can be converted to the problem of graph 
clustering aims at grouping sets of “related” vertices of the 
graph into clusters, communities or modules by taking into 
consideration the edge structure of the graph [5]. Most 
existing works about finding communities in networks 
mainly focused on undirected networks where edges have no 
specific direction as noted in [11]. However, many real-
world complex networks and applications have implicit or 
explicit direction information between the objects which 
reveals asymmetric influence or information flow that we 
can’t ignore, such as the citation networks, social networks, 
technological networks like the World Wide Web, etc. 
Hence, in some extent the effectiveness of any clustering 

algorithms in directed networks depends crucially on how to 
handle the direction of edges properly. 

Ignoring the directionality of edges is the simplest way 
for clustering directed graphs. Obviously, this method isn’t 
an appropriate solution in many real world networks. For 
example, if a person i follows person j but person j doesn’t 
follow person i in social networks like Facebook, while 
simply ignore the direction of links means the relationships 
of person i and j are reciprocal, in fact it means person i may 
be interested in person j but it is not correct vice versa. 
Therefore, this method isn’t accurate and may loss of 
important direction information. 

In order to effectively capture and represent the direction 
of edges in directed networks, a common approach focused 
on finding new objective function. Based on this intuition, 
traditional objective function for clustering undirected graphs 
such as modularity or normalized cut, have widely extended 
to directed graphs [1, 3, 4, 13, 14]. Arenas [12] generalize 
the modularity function proposed by Newman and Girvan 
[8], Kim [1] proposed a generalized form of modularity in 
directed networks by introducing a new quantity LinkRank 
which is considered as the PageRank of links. Another 
common benefit function for optimizing community quality 
is normalized cut proposed by Shi and Malik [9]. Zhou [13] 
and Huang [14] have extended it to directed networks using 
random walks. Beside, Meila [3] introduced WCut which is a 
general class of weighted cut measures on graphs. 

It is important to notice that modularity or normalized cut 
based approaches for clustering directed networks implicitly 
share a similar definition of community structure in which 
nodes are densely connected within community compared to 
the rest of networks. However, we can find meaningful 
clusters in directed networks even though nodes within the 
same community don’t densely connect. As noted in [2, 15, 
22], nodes have similar incoming and outgoing neighbors 
may have great similarity that should be assigned to the same 
community. Based on this intuition, Satuluri [2] adopted a 
two-stage framework for clustering directed graphs. First, 
transform the directed graphs into undirected graphs using 
some symmetrization methods, and then, the symmetrized 
graph can be clustered using existing state-of-the-art graph 
clustering algorithms. The advantage of the two-stage 
framework for detecting clusters in homogeneous directed 
graphs is that prior work on undirected graph clustering can 
be reused. Obviously, both symmetrization methods and 
existing undirected clustering methods may have an 
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important impact on the effectiveness of a two-stage 
framework for clustering directed graphs. 

From the prospective of sysmmetrization, we find the 
degree-discounted symmetirzation which is the state-of-the-
art symmetrization method has its weakness. First, the 
degree-discounted symmetrization approach assumed 
implicitly that the in-degree and out-degree information of 
nodes stand for the in-link weight and out-link weight of 
nodes respectively, however, the degree is only one basic 
metric of graph to discount the weight of hub nodes which 
generate many spurious connections in some domains and 
applications. Second, nodes have weights in some complex 
networks. Therefore, we think the weights of nodes are 
important for clustering directed graphs while the degree-
discounted symmetrization didn’t take into account. 

In this paper, we propose a novel symmetrization method 
called Weight-discounted which take into account the 
weights of nodes. Our method is similar to degree-
discounted symmetrization method and has proven to be 
more effective in some real networks. We are the first to 
combine link analysis with directed graph clustering and 
propose a novel concept on clustering directed weighted 
graphs by taking into consideration nodes weights. 
Furthermore, our method is a generalization of degree-
discounted symmetrization method when the weight of nodes 
is the degree of nodes.  

II. RELATED WORK 

Graph clustering focuses on grouping sets of “related” 
objects of the graph into clusters. However, how to measure 
the “related” relationships between objects based on 
structural context? At the fundamental level approaches 
based on normalized cut assume that a best community will 
have more links within communities and fewer links to the 
rest of communities. From the view of random walk, some 
recent studies [1] revealed that a community is a group of 
nodes which a random walker is more likely to be trapped in. 
This is consistent with the assumption of normalized cut 
based methods. As we stated earlier, more meaningful 
clusters don’t obey this rule. Generally objects or nodes 
within the same cluster are similar and dissimilar to objects 
from other clusters. However, “similar” or “dissimilar” are 
ambiguous. Different definition of similarity will lead to 
different definition of community in the domains of 
community detection and will have different community 
structure. If a domain displays community structure, which 
similarity measure method is more suitable for real-world 
complex networks? This is a question not only essential to 
the effectiveness of graph clustering but also important to the 
fundamental understanding of the complex networks. 

The similarity measure becomes more complicated when 
we attempt to consider about the directionality of edges. 
Generally, clustering directed graph can be roughly put into 
two categories. The first category is directly build a model 
for the directed graph, and then optimize the model. For 
example, the metric-based approaches such as normalized 
cut or modularity belong to this category. Besides, [6] 
suggest a probabilistic model which can model both in-link 
and out-link for directed network community detection. The 

second category is to transform the directed graph to 
undirected graph and then use the undirected graph 
clustering methods. In the second category, any state-of-the-
art clustering methods for undirected graph can be leveraged. 
In the essence, the symmetrization process of a two-stage 
framework for clustering directed graphs is equivalent to 
measure similarities among objects based on link structure. 
Therefore, it is possible and reasonable to transform directed 
graphs to undirected graphs using some symmetrization 
methods. Obviously, the effectiveness of clustering directed 
graphs depends crucially on the transformed undirected 
graphs while the quality of transformed undirected graph 
depends mainly on the symmetrization methods. Hence, a 
reasonable cluster generated by symmetrizing directed 
graphs depends not only on state-of-the-art clustering 
algorithms but also a reasonable symmetrization method.  

We investigate various symmetrization methods for 
clustering directed graph, some methods will be discussed 
below.  Let A be the adjacency matrix of original directed 
graph, and U be the adjacency matrix of the resulting 
symmetrized undirected graphs. 

A. A+AT 

Simply ignoring the directionality of edges is the 
simplest way to obtain a symmetrized graph, while using the 
transformation U = A AT+  to derive an undirected graph is 
similar to it except the weight of bidirectional edges would 
be the sum of the weights from both direction. For its 
simplicity, this method is implicitly used in other related 
works [3, 13, 24] when dealing with directed graph. 

However, this method has the problem of losing 
important direction information in the process of 
symmetrizing directed graph. Besides, nodes don’t have 
direct edges but have common in-coming or out-going 
neighbors won’t cluster together in the symmetrized graph. 

B. Random walk symmetrization 

The symmetrized matrix U obtained from the prospective 
of random walk is as follows: 

                               
P P

2
U = 

T∏ + ∏
                                 (1) 

Here P is the transition matrix of the random walk that 
can be obtained by normalizing the rows of A. Denote π  as 
its associated stationary distribution of P. We can obtain the 
diagonal matrix ∏ with π on the diagonal. This method is 
similar to A+AT  since it has the same non-zero structure as 
A+AT . Hence, the drawbacks of A+AT will also become the 
weakness of this method even though the actual weights on 
the edges may be different from A+AT  symmetrization. 

C. Bibliographic coupling and co-citation symmetrization 

In the field of bibliometrics, co-citation and bibliographic 
coupling are two noteworthy methods for analyzing and 
understanding the patterns or relationships between scientific 
papers from their cross-citations. Kessler [16] introduced the 
bibliographic coupling method where the similarity between 
two papers p and q is computed by the number of papers 
cited by both p and q. The bibliographic coupling matrix B is 
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given by B AAT= , where B(p, q) means the number of 
papers that paper p and q both point to in the directed 
bibliography network.  

The co-citation schema which was proposed by Small 
[17] provides a new way to discover the patterns between 
documents. Similarity measure between two documents p 
and q is based on the number of documents that cite both p 
and q, the co-citation matrix is obtained from C A AT= .  

The two bibliometric methods are useful if we only want 
to analyze the in-link or out-link relationship of directed 
graph. On the other hand, any symmetrization method that 
needs to take into account both directions of edges wouldn’t 
be effective if only adopt one of them.  

D. Degree-discounted symmetrization 

Since bibliometric coupling matrix AAT  capture the out-
link similarity and the co-citation matrix A AT take into 
account in-link similarity, Satuluri [2] proposed bibliometric 
symmetrization via transformation U  AA   A AT T= + which 
naturally takes the sum of both matrix to account for both. 
Generally, this transformation is more effective than 
bibliographic coupling or co-citation symmetrizations. As is 
well known, the hub nodes would generate many spurious 
connections in large scale power-low graphs, therefore, the 
bibliometric method works poorly facing with this situation.  

Considering about this, Satuluri introduced degree-
discounted symmetrization approach which incorporates the 
in-degrees and out-degrees of each node in the 
symmetrization process. The idea is that when two nodes i 
and j commonly point to a third node k, the similarity of i 
and j should be inversely related to in-degree of k. Similarly, 
when node h pointed by nodes i and j, the out-degrees of 
node h should be inversely to the similarity of node i and 
node j. The degree-discounted symmetrization matrix is 
defined as: 

       U D AD A D D A D ADT T
o i o i o i

α β α β α β− − − − − −= +        (2) 

Here, Do and Di are the diagonal matrix of out-degrees 
and in-degrees. α and β are the discounting parameters. 
Empirically 0.5α β= =  work the best. 

The degree-discounted symmetrization approach has 
proven to be effective in some real world complex networks 
such as citation networks, Wikipedia networks, etc. As we 
discussed in section 1, this approach has its advantages and 
disadvantages. In case of its weakness, on one hand, nodes 
often carry weight information in some real networks while 
the degree-discounted symmetrization method didn’t take 
into account. On the other hand, the degree metric of nodes 
is not the only solution to measure and analyze networks or 
graphs. Motivated by this, we propose a generalization form 
of symmetrization method that can be suitable for clustering 
homogeneous directed graphs where nodes may carry weight 
information. 

The generalization form of our proposed symmetrization 
method called Weight-discounted symmetrization which has 
proven to be more effective than degree-discounted method 
in some real world complex networks. For the sake of 
simplicity and easy to computation, the weight information 

of each node in our Weight-discounted symmetriztion 
method can be replaced by in-degree and out-degree of each 
node. In this situation, the Weighted-discounted method is 
relaxed to degree-discounted approach. Our method is a 
universal method for symmetrizing directed graph which the 
state-of-the-art clustering algorithms like spectral clustering 
or Markov clustering can be leveraged. Another notion 
motivated us is that the weights of nodes can be put into 
directed graph clustering. 

III. THE PROPOSED TECHNIQUE 

Instead of using the degrees of nodes to penalize hub 
nodes in degree-discounted symmtrization process, our 
proposed weight-discounted symmetrization attempt to adopt 
in-link and out-link weights of each node to discount the hub 
nodes. Hence, in this section, we first discuss the problem of 
the in-link and out-link weight of the nodes which is popular 
in link analysis; and then we present the weight-discounted 
method we use to symmetrize real world directed graphs. 

A. Link analysis 

Link analysis is another topic in directed network mining 
which has attracted a lot of attention. Generally, given the 
link relationships of nodes, the objective is to compute the 
node ranking score based on link structure. PageRank [20] 
which was developed by Brin and Page is one of the most 
popular node ranking algorithms. In PageRank, the total out-
going weights of each node is the same and every link from 
node i is weighted by 1/Do(i), where Do(i) is the out-degree 
of node i. PageRank is considered as a random surfer model 
which models two types of random jumps. A random surfer 
often follows the out-going links with probability p, and 
sometimes the surfer would jump to other nodes which not 
pointed by current node with probability 1-p. 

Another popular node ranking algorithm is HITS 
proposed by Keinberg [21]. Different from PageRank, every 
node in networks has two scores: hub score and authority 
score. The intuition behind HITS is that a good hub should 
point to many good authorities and a good authority is 
pointed by many good hubs. The iterative algorithm for 
computing hub score and authority score can be represented 
as the following operations, 

                  A , AT= =a h h a                               (3) 
where vector T

v1 vn(a , ,a )= ⋅⋅ ⋅a  and T
v1 vn(h , , h )= ⋅⋅⋅h  

contain the authority score and hub score of each node 
respectively. The final authority and hub scores of every 
node after the iterative processes are 
                              A A , AAT T= =a h h a                          (4) 

Here, the authority vector a is the principal eigenvector of 
the authority matrix A AT and the hub vector h is the 
principal eigenvector of the hub matrix AAT . Obviously the 
hub matrix AAT  and authority matrix A AT are 
corresponding to the bibliographic coupling matrix and co-
citation matrix respectively. This is consistent with the 
symmetrization process in clustering directed graph. For 
simplicity, we use HITS algorithm to compute the weights of 
nodes where authority scores can be considered as
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(a) Similarity between i and j (left) < (right)                                          (b) Similarity between i and j (left) < (right)  

Figure 1.  Scenarios motivated weight-discounted 

the in-link weight of nodes, and hub scores can be 
considered as the out-link weight of nodes. Note that HITS 
algorithm is not the only choice to compute the weights of 
nodes. Any other methods that can effectively compute the 
in-link and out-link weights of nodes can also be leveraged. 

B. Weight-discounted symmetrization 

Most existing directed graphs clustering algorithms 
ignore the weights of nodes or have an implicit assumption 
that nodes have the same weights. However, nodes are not 
equal in directed networks generally. The interactive 
relationships between two nodes may be reciprocal, 
unidirectional, or sometimes there are no direct links 
between them but own some common features, such as 
common neighbors, equal authority scores, etc. The implicit 
similarity computation of degree-discounted approach 
considering about the common in-going and out-going 
neighbors in directed graphs, this is reasonable and 
consistent with other studies [22] about link-based similarity 
measure in directed networks. We want our proposed 
symmetrization method incorporates the weights of each 
node in symmetrizing the directed graph. Hence, is it 
possible for us to present a novel symmetrization method 
for directed graphs that could incorporate the weights of 
nodes? The answer turns out to be yes.  

When we obtain the in-link and out-link weights of 
nodes from any node ranking algorithms like HITS. The 
first step is to construct weight matrix. For a directed 
network, we denote the diagonal matrix of in-link weights 
by Wa  with associated adjacency matrix A. Similarly, the 

diagonal matrix of out-link weights is denoted as hW . In 

this paper, we obtain out-link weights from computing hub 
score and in-link weights from corresponding authority 
score. It is obvious that Wa  and hW  are similar to the 

diagonal matrix of in-degrees Di and out-degrees Do  

respectively except the value in the diagonal. 
The similarity between two nodes should be higher in 

the same cluster and lower in different clusters. Hence, a 
good symmetrization for clustering directed graph would 
place high weight on edges between nodes of the same 
community and set low weight on edges that in different 
communities. It is possible that two nodes have similar 
score or weight may have high similarity. For example, if 
we search “Albert Einstein” in search engine like Google or 

Bing, a good search engine would return pages relevant to 
the query and the resulting adjacent web pages have similar 
PageRank scores. Generally, the adjacent web pages are 
very similar. In order to introduce how the weights of nodes 
should be put into the symmetrization process, first we 
consider the following two scenarios (see Fig.1 (a)): 

1) Nodes i and j both point to nodes h, which has a high 
authority score, that means h is a popular node in the 
original directed network. 

2) Node k pointed by nodes i and j while node k has a 
low authority score in the original directed network. 

Case 1 above is often seen in China’s Twitter-like 
microblog like Weibo, a famous people often owns a lot of 
followers but that doesn’t mean all followers are similar. On 
the other hand, if two people i and j both follow an ordinary 
people k that has a low authority score, intuition suggest 
that i and j may be more similar than case 1. Similarly, if 
nodes i, j, and h both point to node k, while node h has a 
higher hub score than node j, in other words, node h points 
to a lot of nodes besides node k. As seen in Fig.1 (b), node i 
will receive more contribution from node j than node h. 
Based on this intuition, we define the out-link weights based 
similarity between nodes i and j as follows: 

( )
( ) ( )

( ) ( )
( )

( ) ( )
( ) ( )

( )

α α β
k

α α β
k

              

A

 

i,k A j,k1
W i, j

W i W j W k

A i,k A k, j1

W i W j W k

out

h h a

h h a

=

=




                     (5) 

Here W (i)h  is short for W (i, i)h  which is the hub score of 

node i, and W ( j)a  is short for W ( j, j)a  which is the 

authority score of node j. ( )W i, jout is the out-link similarity 

between nodes i and j based on weights of both nodes. α  
and β  are the discounting parameters. We have made a 

small modification on Wout  matrix and the final matrix 

format can be expressed as: 
α β αW W AW A Wou

T
h at h=                       (6) 

Similarly, the in-link weight matrix can be represented as 
β α βW W A W AWT

a hin a= . We naturally take the sum of in-
link and out-link weights matrix, the final symmetrized 
matrix is defined as follows: 

        α β α β α βW W AW A W W A W AWT T
h a h a h a= +          (7) 
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Note that the above expression is similar to the degree-
discounted symmetrization matrix. However, instead of 
using the in-degree and out-degree of nodes, we effectively 
take into consideration the weights of nodes. This is the 
biggest difference of our proposed method to the degree-
discounted approach and we will discuss later that the 
degree-discounted symmetrization method can be derived 
from our weight-discounted symmetrization approach. 

As we discussed in section 3.1, the weight matrix Wa  

and Wh  can be obtained by some node ranking algorithms 
like HITS. Someone may doubt that every iterative process 
in HITS algorithm follows by a normalization process. 
Hence, the hub and authority score of each node obtained 
from HITS algorithm will be very small and almost close to 
zero if the directed graph is large scale. This may lead to the 
similarity score between two nodes turn to be very small. 
Hence, we use the logarithmic function defined as follows to 
maximize the similarity: 

           
1 a( ), a( ) 0log

a( )
1,a( ) 0

e
i i

i
i

 − ≠= 
=

                     (8) 

                   
1 h( ), h( ) 0log

h( )
1,h( ) 0

e
i i

i
i

 − ≠= 
=

                    (9) 

After above transformation, the weights will be greater than 
1 and we have retained the edges in the original directed 
graph. We find the discounting parameters 1α β= = would 
be more useful in some small real world network. While in 
large scale directed networks, the hub score and authority 
score would be small, and the absolute value of logarithmic 
function will be inversely very large so the final value of hub 
and authority. Hence, the value of α  and β  should smaller 
than 1 which can penalize the weights of node. Generally 

0.5α β= = work the best. This is consistent with degree-
discounted symmetrization. 

C. Relationship with existing symmetrization 

Next we will describe the relationships between our 
proposed weight-discounted method and existing state-of-
the-art symmetrization methods in clustering homogeneous 
directed graph. It turns out that biblometric and degree-
discounted symmetrization methods can be considered as the 
special case of our method. Such connection demonstrates 
that our weight-discounted method provides a general 
framework to unify existing symmetrization methods. 

Let Ih  and Ia  be the diagonal matrix of hub score and 
authority score of nodes respectively where all scores equal 
to 1. The weight-discounted symmetrization can simplify to 
the form as follows: 

                
W I AI A I I A I AI

AA A A

+ 

      

T T
a a h a

T

h

T

h=

= +
                    (10) 

The bibliometric symmetrization  U AA A AT T= +  as we 
describe in section 2 can’t effectively deal with the influence 
of hub nodes. Because there exist an assumption in this 
symmetrized matrix that all nodes in directed networks have 
equal hub score and authority score. This is not true in real-

world networks since power-law distribution of degrees 
exists in large networks. 

The degree-discounted symmetrization method can also 
be derived from our method. If the hub score and authority 
score replaced by the inverse of out-link degrees in-link 
degrees respectively, we denote Dh and Da as the diagonal 
matrix which the value is the inverse of out-degrees and in-
degrees respectively. Note that set A A + I= prior to the 
symmetrization ensures the degrees are above zero. 
Therefore, the transformed symmetrized matrix will be the 
degree-discounted matrix as follows: 

    
αA A A

      

W D D D D D MD

A A D D D AD D DA

T T
h a h a h a

T T
o i o i o i

α β β α β

α β α β α β− − − − − −

= +

= +
     (11) 

As we can see from the above equation, our proposed 
weight-discounted method provides a general form of 
symmetrization methods for clustering directed graphs. Our 
innovation is that we put into node weights in the process of 
symmetrization while other symmetrization approaches don’t 
take into account. 

D. Pruning the symmetrized graph 

For small-scale graphs, the time complexity and space 
complexity is not very high, so in order to retain complete 
information of links and weights, we needn’t to do extra 
work. For large-scale real world networks, the resulting 
symmetrized matrix will have many non-zero elements so 
that it’s costly for graph clustering algorithms to deal with. 
We suggest a threshold for our proposed method if the 
directed graph is very large. Generally, the symmetrized 
matrix will be densely connected if we set a low threshold. 
However, it’s impossible and impractical for most clustering 
algorithms to cluster a dense matrix. On the other hand, it’s 
hard for low performance computer to symmetrize large 
directed graphs without threshold or with low threshold. 

In terms of large graphs, it’s reasonable to pick a 
threshold to retain elements above the threshold. We find 
the weight-discounted symmetrized matrix is as easy as 
degree-discounted method to choose a suitable threshold.  

IV. EXPERIMENTAL EVALUATION 

In this section, we will introduce the evaluation method 
and the datasets we use. Finally, we will give a simple 
discussion involving the implementation.  

A.  Evaluation method 

Considering about the ground truth, we use one 
commonly used metric called average F-measure for 
evaluating the performance of graph clustering output. We 
first give some description about precision and recall. 

Denote Tk  and Sk  as the set of nodes in the k-th cluster 
come from the ground true category and the graph clustering 
output respectively. Given the true category 

{ }1 2T T ,T ,Tn= ⋅⋅⋅ and the graph clustering category 

{ }1 2S S ,S ,Sn= ⋅⋅⋅ , then the precision and recall of one output 

cluster is defined as: 
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   (a)                                                                                                  (b) 

Figure 2.  Effectiveness of symmetrizations on Citations2555 using (a) Graclus and (b) Metis,as the clustering algorithms 

               
| S T |

precision(S ,T )
| S |
i j

i j
i

=


                    (12) 

                 
| S T |

recall(S ,T )
| T |
i j

i j
j

=


                        (13) 

Where | |⋅   indicates the cardinality of a set. Then the F-
score is the defined as: 

              
2 precision recall

F-score
precision+recall

∗ ∗=                   (14) 

Generally each graph output cluster Si will obtain a highest 

F-score ( )F S max {F(S ,T )}i j i j= . We record the highest F-

measure of each output cluster and then use it to compute the 
average F-score: 

              i

i

S *F(S )
Avg.F-score

| S |
i i

i

= 


                   (15) 

B. Datasets 

We use a real world dataset to evaluate our method. This 
dataset is a paper citation network obtained from [23]. This 
directed graph consists of 2555 vertices and 6101 edges. In 
what follows, we call this dataset Citations2555. Besides the 
graph of paper citations, the papers have already classified 
into 10 research topics of CS (such as Data Mining, 
Information Retrieval), which have discovered by an author-
conference-topic model and available at arnetminer.org. 

C. Implementation 

We ran experiment comparing our proposed approach 
with several other symmetrization methods applicable to 
symmetrize directed graphs. All clustering processes consist 
of two steps: first the asymmetric directed graph matrix is 
transformed to symmetric matrix, then the symmetric matrix 
would be clustered using some existing undirected clustering 
algorithms such as Graclus [24], Metis [25]. We obtained the 
latest version of those graph clustering software from 
authors’ respective webpages. Different symmetrization 

methods we use to compare ours were written by JAVA, 
using sparse matrix representations. Note that we perform 
our experiments on a dual core machine of 3.1GHz processor 
speed and 4GB of main memory. 

V. RESULTS ANALYSIS 

The effectiveness of different symmetrizations using 
Graclus and Metis is shown in Fig.2.  

As seen in Fig.2 (a), the Avg. F scores of our proposed 
weight-discounted symmetrization have a distinct advantage 
over other symmetrization methods using Graclus.  Other 
symmetrizations have similar Avg. F scores which are 
difficult to judge good from bad. In Fig.2 (b), we can see that 
our proposed symmetrization have a slight superiority than 
other methods even though the Avg. F scores are very low 
using Metis as the clustering algorithm.  It is obvious that 
Graclus is better than Metis in graph clustering. 

We also examine the effect of parameters α and β  in 
Table I.  For ease of comparison, we fixed the number of 
clusters at 10. When 1α β= =  the average F-score is about 
0.831, and average F-score is also good when 0.5α β= = . 

TABLE I.  EFFECT OF VARYING α , β  (USING GRACLUS). THE BEST 

RESULTS ARE INDICATED IN BOLD 

α  β  Avg.F-score using Graclus 

0 0 0.557113468 

0.25 0.25 0.554377408 

0.25 0.5 0.574694395 

0.25 0.75 0.554325802 

0.5 0.25 0.549671017 

0.5 0.5 0.603897803 

0.5 0.75 0.544767741 

0.75 0.25 0.544889421 

0.75 0.5 0.607495442 

0.75 0.75 0.521429686 

1.0 1.0 0.831569118 
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VI. CONCLUSION AND FUTURE WORK 

A two-stage framework of clustering directed graph 
depends crucially on the effectiveness of symmetrizing the 
directed graph and the state-of-the-art graph clustering 
algorithm. In this paper, we present a novel symmetrization 
method called weight-discounted which incorporates the 
weights of nodes into the process of symmetrization. On one 
hand, our method is complete in symmetrizing the directed 
graph, which not only captures the in-link and out-link 
similarity between nodes but also take into consideration the 
weights of nodes; on the other hand, our approach is a 
general form of bibliometric and degree-discounted 
symmetrization methods.  For future work, we would like to 
extend our method from homogeneous directed graph to 
heterogeneous directed networks. Nodes often own 
metadata such as gender, interest, profession, etc. in directed 
networks like Facebook or Twitter. Hence, the metadata 
should be put into the computation of nodes weights and 
that would have a great impact on the similarity among 
different nodes. 
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