
Audio Retrieval Based on Chinese Keyword Search in Relational Databases

Boyan Zhu, Guang Liu
College of Art

Hebei University
Baoding, Hebei, 071002 China

E-mail: zhu_boyan@yahoo.com.cn (B. Zhu)
E-mail: lg672@tom.com (G. Liu)

Liang Zhu
Key Laboratory of Machine Learning and

Computational Intelligence, School of Mathematics and
Computer Science
Hebei University

Baoding, Hebei, 071002 China
E-mail: zhu@hbu.edu.cn (L. Zhu)

Abstract—In this paper, we propose a new method based on
Chinese keyword search to select the WAV or MP3 files in
audio post-production. First, we listen to each file and label it
with Chinese characters, and then classify and store the files in
a relational database system. Then, we use the techniques of
Chinese keyword search to match query characters and the
tuple characters quickly, and to compute similarities between
the query and candidate tuples. For the characteristics of
Chinese keyword search, we present a ranking strategy and an
algorithm to refine the candidate tuples resulting from the first
round matching, and finally get top-N results of audio files.
The experimental results show that our method is efficient and
effective.

Keywords-Relational database; Audio retrieval; Post-
production; Chinese Keyword Search; Ranking strategy

I. INTRODUCTION

Audio retrieval has gained more attention of the research
community, involving speech, music, and general
environmental sounds [1, 2]. The existing work includes
mainly four types: the methods based on DCMI (Dublin
Core Metadata Initiative), techniques of traditional
information retrieval (IR), content-based retrieval, and the
retrieval methods for special audio information. In general,
speech can be transformed into text by using the automatic
speech recognition (ASR), and then we employ IR
techniques for speech indexing and retrieval. Music retrieval
will be based on pitch and a set of features, including
structured music and sample-based music. For general
environmental sounds, audio retrieval will deal with a variety
of sound data such as bird songs, thunders, and applause. For
the applications of general-purpose sounds, there are many
challenging problems in audio retrieval, which requires
specialized audio features.

In audio post-production of a film or a television program,
the sound files are managed generally by a file system (say,
explorer.exe in Windows XP). To obtain a desired audio in
thousands of files, a user has to open some files and listen
carefully to them one by one and again and again, it is not
easy for the user to find audio files manually in the file
system. In this paper we give a framework of managing
sounds files by using a relational database management
system (RDBMS) and the techniques of Chinese keyword
search for audio retrieval.

Inspired by the success of free-form keyword search on
information retrieval (IR) and Web search engines, i.e., it is
popular to users who need not know query languages and the
structure of underlying data. Researches of English keyword
search with IR-style free-form in relational databases have
been extensively studied since 2002 [3-5]. For the
differences between Chinese and English, [6] proposed a
method to process the Chinese keyword search. We will
utilize the methods in [6, 7] for our audio retrieval in audio
post-production, and then deal with top-N keyword queries.
For example, if the description of a tuple t0 has seven
Chinese characters meaning “sound of wind-bell, slowly” in
underlying database, and a query Q has also seven Chinese
characters with the same meaning as t0 matching five
Chinese characters with t0 but not matching completely, then
we can obtain the top-N results sorted by a ranking strategy,
and the tuple t0 will be in the results since there are five
matching Chinese characters between query Q and t0, and the
matching characters lead to a high similarity. Of course, the
tuple t1 with six Chinese characters meaning ‘sound of gentle
wind, slowly’ may be in the top-N results with four matching
Chinese characters for Q, and will rank behind the tuple t0.

II. CONCEPTS AND TERMINOLOGIES

DCMES (the Dublin Core Metadata Element Set) [8]: it
is a vocabulary of fifteen properties for use in resource
description. The fifteen elements are “Title, Creator, Subject,
Description, Publisher, Contributor, Date, Type, Format,
Identifier, Source, Language, Relation, Coverage, Rights”.

Depending on the requirements of our application and
referring to DCMES, we design our Foley library such that
sound-relation has 16 attributes as follows: qqe

SoundTable(Serial-number, Class, File-name, Sampling-
ratio, Track, Mike-type, REC-model, Sound-class, REC-
place, REC-creator, REC-date, Source, Size, Keywords,
Description, Recommendation).

Classifications and descriptions for sound files are the
key steps in developing our application, which are heavy
work manually. The attribute Description in SoundTable
will play an important role in our application since reading
text costs much less than hearing a sound file. For instance, a
Description has thirty-three Chinese characters meaning ‘in a
quiet street, at 1 minute 25 second, a person coughing far
away, at 2 minute 10 second, sound of leaves trembling in a
fit of breeze’.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0634

Tuple word: Consider a relation R with m text attributes
{A1, A2, …, Am} and n tuples (i.e., |R| = n). For a tuple t∈R
and attribute A∈{A1, A2, …, Am}, t[A] consists of one or
more Chinese character(s), which is denoted by {z1z2z3 … zk}.
Each single Chinese character zi (1≤ i ≤ k) is called a Chinese
tuple word (or a tuple word, for short). Also, we do not
distinguish “Chinese character” and “Chinese word” in the
following discussion. A Chinese phrase will contains two or
more Chinese characters/Chinese words.

Index Table: An Index Table is composed of tuple
words and their related information extracted from the
database, its schema is TupleTable(wid, word, size,
DBValue), where wid is the primary key. For a tuple t∈R and
an attribute A ∈{A1, A2, …, Am}, a tuple word z ∈ t[A] will
be stored in the text attribute word. DBValue is a text
attribute with form “tid,cid,dl,tf,df;…; tid,cid,dl,tf,df;”, where
tid is the identifier of t, cid is the identifier of attribute (or
column) A, dl =|t[A]| is the length of t[A] which contains the
tuple word z , tf is the number of occurrences of z in the cell
with tid and cid, df is the number of cells that have the same
cid and contain z, equivalently, df = |{tk; z∈ tk[A]}|. The
attribute size is the total number of cells that contain z, that is,
the number of semicolons (“;”) in DBvalue.

Query: A query Q is a set of Chinese query words with
or without some semicolons, Q = {q1q2…qi[;…;q1q2…qk]},
where each qh (1≤ h ≤ max(i,…, k)) is a Chinese word.

Simple query: A simple query Qs is the query Q without
semicolon. Qs has the form of {q1q2…qi} .

Complex query: A complex query Qc is composed of
two or more Qss. Qc = {q1q2…qi;…;q1q2…qk} = {Qs

1; …;
Qs

p}.
Length: The length of a query Qc is the total number of

query words contained in the query, |Qc|=|Qs
1|+|Qs

2|+…+|Qs
p|.

The length of t[Ai] is the number of tuple words in t[Ai].

III. INDEX AND RANKING STRATEGY

The index techniques and ranking strategies play
important roles in processing of top-N queries (or ranking
queries) [6, 7], and are described in this section.

11 nD

22nD

1w

2w

dw

11D 12D

21D 22D

1dD 2dD
tableHash − listword − listdb −

∧

∧

∧∧
dndD

•
•
•

•••

•••

•••

Figure 1. Structure of cwIndex.

A. Creation of cwIndex

The relation TupleTable in Section II is employed to
store the information of our cwIndex (stands for Chinese
word index) used in our application. The structure of
cwIndex is shown in Figure 1, which consists of one hash
table, one word-list, and d db-lists where d is the size of

word-list. The node w in the list word-list(w, pdbvalue)
corresponds to TupleTable.word. The pdbvalue is a pointer
that points to a list db-list(D, pdblist), where D in db-list
corresponds to the substring which is split by semicolon “;”
in TupleTable.DBvalue. The Hash-table is used to lookup
word-list.w quickly. The process of creating our cwIndex
needs: (1) Normalization of tuples in R. (2) For each z∈t[A],
extract its related information in tuple t to create list db-list.
(3) Create list word-list.

To evaluate a query, we can use two storing strategies.
Strategy-1, the entire cwIndex is in main memory. Strategy-2
will store db-lists in fixed disk and only load the hash table
and word-list into main memory. Strategy-2 will be used in
our experiments.

B. Ranking Strategy

For a query Q, to rank its answers, we define the
similarities between the query and tuples based on the
ranking model in IR described in [9]. For the query Q and a
tuple t, our ranking strategy will be given according to the
similarities below:


∈

=
cs QQ

sc tQsimtQsim),(),((1)

yAtQsimtQsim i
s

AAA

s

i

*]))[,((max),(
m1 ,,{ }…∈

= (2)


∈∈

=
][,

])[,(*),(])[,(
i

s AtzQq
i

s
i

s AtzweightQqweightAtQsim (3)

df

n

avdl

dl
ss

tf
Atzweight i

1
ln*

*)1(

))ln(1ln(1
])[,(

+

+−

++= (4)

alcy /)max(= (5)
Equation (1) shows that the similarity between Qc and t is

the sum of similarities between t and Qs for all Qs∈Qc. The
similarity between Qs and t is the product of parameter y
(which we will discuss in the following Section IV.B) and
the maximum value of similarities between Qs and t[Ai]∈t
(i=1,2,…,m), as shown in (2). Equation (3) calculates the
similarity between Qs and t[Ai] by the inner product function,
where weight(q, Qs) is the appearance frequency of query
word q in query Qs. Component weight(z, t[Ai]) computes a
weight for each tuple word z in the text attribute t[Ai].
Equation (4) being one of the most widely used weighting
methods in IR [9], we employ it to compute the weight of a
tuple word z in t[Ai], where s is a constant and usually set to
0.2, avdl is the average length of t[Ai](t∈R), and n = |R| is the
total number of tuples in R.

IV. EVALUATION OF CHINESE KEYWORD QUERY

For a given query Q = Qs or Q = Qc = {Qs
1; Q

s
2;…;Qs

p},
without loss of generality, let Q = Qc. Firstly, obtain its
candidate tuples using cwIndex. Secondly, based on our
ranking strategy, a ranking algorithm is defined such that the
more relevant answers for the query are ranked higher.
Thirdly, a refined method with phrase-based ranking is
introduced to find the high-ranking desired answers from the
candidate tuples. Finally, output ranked top-N results with

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0635

similarities by friendly user interface. These methods guarantee the efficiency and effectiveness of Q.

...

...

......

... ...

...

...

. . .

. . .

. . .

. . .

. . .

. . .

>

>

>

> >
>

>

...

...

...

... . . .

. . .

. . .

... ...

...

hash-listsco-list

...

...

spid-listseindex-list

>
>

>
>

> >

>
>

>
>

1iofsco
11Seindex

11Spid

2iofsco

3iofsco

niofsco

12Seindex
mSeindex1

21Seindex 22Seindex pSeindex2

31Seindex kSeindex3

njSeindex
1nSeindex

1Bucket

2Bucket

3Bucket

lBucket

12SpidaSpid1

21Spid22SpidbSpid2

31SpidcSpid3

1lSpidldSpid

>
>

>

Figure 2. Lists of seraching and randing of candicate tupels.

A. Seraching and Randing of Candicate Tupels

To obtain and rank candidate tuples of Q is based on the
hypothesis: the answers of Q are the tuples that contains the
query words as many as possible. Thus, we design the
procedure that consists of linked lists as shown in Figure 2.
The nodes of lists are generated dynamically in the
processing of the query, meanwhile the lists are built and
candidate tuples are ranked. Figure 2 includes two parts: R-
part is the right part, i.e., the part in the pane with real line;
L-part is the left part outside the pane.

(1) R-part contains two layers of lists, hash-list→{spid-
list}, which are used to find the candidate tuples. For hash
list hash-list, the structure of its bucket is Bucket(B, pspid,
pnext), B is the value of hash function at a tuple identifier
(tid), and B := int(tid) mod 100 in our experiments. In order
to speed up matching, we sort the buckets of hash-list
decreasingly according to their values {Bucket.B}. The
pointer pspid points to the first node of spid-list, and the
pointer pnext points to the next Bucket of hash-list. For list
spid-list, its node is indicated by Spid with structure {tid,
pseindex, pspid} where tid is tuple identifier, pointer pspid
points to the next node of list spid-list, and pointer pseindex
points to the corresponding node of list seindex-list in L-Part.
There is a one-to-one correspondence of nodes of spid-list to
nodes of seindex-list in Figure 2.

(2) L-Part includes three layers of lists, that is, sco-
list→{seindex-list→{detail-list}} (notice that the third layer
list detail-list is not drawn in Figure 2). L-Part is applied to
rank the candidate tuples. the structure of node iofsco is {sco,
pseindex, pnext, pprior}, and The nodes {iofsco} of list sco-

list are sorted decreasingly by the values of iofsco.sco. Since
a tuple word z may appear in multiple tuples, the value of sco
is the number of query words that belong to a tuple in
underlying database. The nodes with the same value of sco
are inserted into list seindex-list pointed by pointer pseindex.
For double-linked list seindex-list, its nodes are sorted
decreasingly by the values of Seindex.ssco, the node of
seindex-list is denoted by Seindex with the structure of {tid,
sco, ssco, pdetail, pnext, pprior }, where ssco is used to store
the similarity between a query and a tuple computed by a
procedure, and pointer pdetail points to list detail-list not
drawn in Figure 2. The node of detail-list is indicated by
Detail with structure {zid, cid, dl, tf, df, size, pnext}, where
zid is the pointer of the array that stores the word z, the array
will store the codes of GB2312-80 for Chinese words with
tuple-identifier Seindex.tid and column-identifier Detail.cid,
cid is the column-identifier (or called attribute-identifier) that
the Chinese word belongs to the value of tuple tid at the
attribute cid, size is the number of tuples in the underlying
database.

B. Refined Method with Phrase-based Ranking

Equation (5) in the Section III.B, y = max(c)/la, adjusts
the similarity between a query Qs and a tuple t in (2), where c
is the longest length of the matching substring between Qs
and t[Ai] (Ai ∈{ A1, …, Am }), and la is the length of t[Aa] that
corresponds with the length c. For instance, Qs =
{…qiqi+1…qj...}, t[Ai] = {…zmzm+1…zn…} (i<j, m<n), if qi=
zm, qi+1 = zm+1, …, qj= zn and the matching substring
“qiqi+1…qj ” (= “zmzm+1…zn” in t[Ai]) is the longest one, then
c = | qiqi+1…qj | = j−i+1(= | zmzm+1…zn |) .

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0636

V. EXPERIMENTS

Our experiments are carried out using Microsoft’s SQL
Server 2000 and VC++6.0 on a PC with Windows XP, Intel(R)
Core2 Duo 2.0 GHz CPU, and 2.0GB memory. In addition,
ODBC and ODBC API functions are used in our
implementations. The real dataset contains 500 WAV or MP3
sound files that come from a foley library as described in
Section II.

The parameters that we change in the experiments are the
number of query words and the number N of results
requested in top-N queries. The workload contains 100
queries, and is used to measure the efficiency and
effectiveness of our method. The number of query words is
between 2 and 16, and N will be 1, 3, 10, 20, or 50 for top-N
queries.

In the following figures, the suffixes “1”, “3”, . . . , and
“50” of legends indicate the top-1, top-3, . . . , and top-50
queries, respectively.

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16

the number of query words

r
e
c
a
l
l

r1 r3 r10 r20 r50

Figure 3. Recalls of queries.

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16

the number of query words

p
r
e
c
i
s
i
o
n

p1 p3 p10 p20 p50

Figure 4. Precisions of queries.

For all queries, the average elapsed times including
Index-time and Result-time are not larger than hundreds of
milliseconds. Our method is efficient due to the efficiency of
RDBMS.

Figure 3 and Figure 4 show recalls and precisions of top-
N results of keyword queries respectively. In Figure 3, with

the increase of N, recall will become larger. The reason is
that the total number of results desired in the database is
constant, while the number of matching tuples in the top-N
results will increase as N becomes larger. The precision in
Figure 4 is calculated by the actual number of results
returned rather than the value of N for each query. With the
increase of N, precisions will decrease. Usually, the more
concrete queries are, the more accurate answers will be
obtained, and the number of results will be less than N for
larger N’s (say N = 50) in our experiments.

VI. CONCLUSIONS

For a framework of managing sound files by using a
relational database management system, we proposed a new
method based on Chinese keyword search to select the WAV
or MP3 files in audio post-production. We listen to each file
and label it with Chinese words, and then classify and store
the files in a relational database system. The basic idea of
techniques of Chinese keyword search is to create an index
and build a ranking strategy. Thus, we can use Chinese
keyword queries to find audio files. For a query, we employ
the index to match query words and tuple words quickly, and
use the ranking strategy to compute similarities between the
query and candidate tuples, and finally get top-N results of
audio files ranked by similarities. The experimental results
show that our method is efficient and effective.

ACKNOWLEDGMENT

This work is supported in part by NSFC (61170039) and
the NSF of Hebei Province (F2012201006).

REFERENCES
[1] G. Lu, “Indexing and Retrieval of Audio: A Survey,” Multimedia

Tools and Applications, Vol.15, No.3, 2001, pp. 269–290.

[2] D. Mitrovic, M. Zeppelzauer, and C. Breiteneder, “Features for
Content-Based Audio Retrieval,” Advances in Computers, vol.78,
2010, pp. 71-150, doi:10.1016/S0065-2458(10)78003-7

[3] S. Agrawal, S. Chaudhuri, and G. Das, “DBXplorer: A System for
Keyword-Based Search over Relational Database,” Proceedings of
the 18th International Conference on Data Engineering, San Jose, 26
February -1 March 2002, pp. 5-16.

[4] F. Liu, C. Yu, W. Meng, and A. Chowdhury, “Effective Keyword
Search in Relational Databases,” 26th ACM SIGMOD/PODS
International Conference on Management of Data/Principles of
Database Systems, Chicago, 27-29 June 2006, pp. 563-574.

[5] J. Yu, L. Qin and L. Chang, “Keyword Search in Relational
Databases: A Survey,” IEEE Data Eng. Bull. Special Issue on
Keyword Search, Vol. 33 No.1, 2010, pp. 67–78.

[6] L. Zhu, Y. Zhu, and Q. Ma, “Chinese Keyword Search over
Relational Databases,” 2010 Second World Congress on Software
Engineering (WCSE 10), Wuhan, 19-20 December 2010, pp. 217-220,
doi: 10.1109/WCSE.2010.81.

[7] L. Zhu, Q. Ma, C. Liu, G. Mao and W. Yang, “Semantic-distance
based evaluation of ranking queries over relational databases,”
Journal of Intelligent Information Systems, Vol. 35, No. 3, 2010, pp.
415-445, doi:10.1007/s10844-009-0116-5.

[8] Dublin Core Metadata Element Set, Version 1.1,
http://dublincore.org/documents/dces/

[9] A. Singhal, “Modern Information Retrieval: A Brief Overview,”
IEEE Data Eng, Vol. 24, No. 4, 2001, pp. 35- 43.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0637

