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Abstract—The paper proposes a method for semantic message 
matching in automatic service composition. It develops a 
framework in which the exported message description and 
behavior description of a service, and represents the behavior 
of a service with a finite state machine. Since the service 
interface definition can be represented by ontology concepts, 
the internal representation language enables us to define some 
issues required by service composition formally, qualitative 
and quantitative constraints plus reasoning on concepts, and 
the service behavior can be represented using linear logic 
formulas, so the inference rules of linear logic can check the 
match-ability and satisfy-ability of service message. 

Keywords- E-service; composition; linear logic; Workflow 

I.  INTRODUCTION 

With the explosive growth of Internet, more enterprises 
are providing various E-services for collaborative commerce 
online to achieve competitive advantages. Services are self-
contained, modular applications that can be described, 
published, located, and accessed over network by using open 
standards. The functionality of the individual service is 
limited and cannot satisfy some practical requirements. The 
potential of services can only be achieved if they are used to 
dynamically compose some new services that provide more 
sophisticated functionalities compared to existing ones [1]. 

The service composition is a highly complex task, and it 
is already beyond the human capability to deal with the 
whole process manually. Rao et al.[2] proposed a method for 
automatic composition of Semantic Web services using 
Linear Logic (LL) [3] theorem proving. The services are 
presented by extralogical axioms and proofs in LL. A 
process calculus to present the process model of the 
composite service is used. The above protocols are based on 
a centralized broker that manages the service composition 
process. The drawback is that if a huge number of users 
attempt to access an increasing number of various services 
distributed over the network, the broker becomes quickly a 
bottleneck. 

Also, agent-based techniques[4] have been proved to be 
feasible to realize the automatic systems of Web services. 
Agents are envisioned for automatic discovery, execution, 
and integration of Web services. However, no mature 
method has been proposed to manage birth, death, migration, 

stability, and communication processes of enormous agents. 
They can not meet with autonomous management, evolution, 
and adaptation of the next-generation Web service [5]. 

    We describe a method for automated E-service 
composition which is based on the proof search in 
(propositional) multiplicative intuitionistic fragment of 
Linear Logic. Given a set of existing web services and a set 
of functionality and non-functionality attributes, the method 
finds a composition of atomic services that satisfies the user 
requirements. a description of existing web services (written 
in WSDL) is translated into extralogical axioms in Linear 
Logic, and the requirements to the composite services are 
specified in form of a LL sequent to be proven. Second, we 
use a MILL theorem prover to determine whether the 
requirements can be fulfilled by the composition of existing 
atomic service. If it is possible then the last step is to 
construct flow models (written in BPEL4WS) from the 
generated proofs. We assume that the composite service is 
ready to be executed when the flow model and description 
of each atomic services are given. Because of soundness of 
MILL correctness of composite services is guaranteed with 
respect to initial specification. Completeness of MILL 
ensures that all composable solutions would be found. Our 
method can be regarded as an extension of the service 
composition method using Structural Synthesis of Programs 
proposed. The difference is that the method used in this Web 
Service Description Process Description Proof Axioms in 
LL. 

The process of service composition paper considers also 
the quantitative and qualitative constraints in addition to the 
structural information of services. This paper is focusing on 
the second step of the composition process, namely 
presentation and proof using LL. We assume that WSDL 
presentation of services has been translated into a set of LL 
axioms by a compiler.  

II. LINEAR LOGIC-BASED IMPLEMENTATION OF E-
SERVICE COMPOSITION  

An e-service is a software artifact that interacts with its 
clients in order to perform a specified task. In abstract 
model, the client can interact with the e-service instance by 
repeatedly choosing an action and waiting for either the 
fulfillment of the specific task, or the return of some 
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information. On the basis of the information returned, the 
client chooses the next action to invoke. The workflow can 
be used to realize a target e-service requested by the client, 
not simply by selecting a member of the community to 
which delegate the target e-service actions, but more 
generally by suitably “composing” parts of e-service 
instances in the workflow in order to obtain a virtual e-
Service which “is coherent” with the target one.. 

E-service composition is the cooperation among 
service resources. Each agent should negotiate with others 
based on the capabilities that can be executed. We take 
advantage of full intuitionist LL. To use LL theorem 
proving as service composition negotiation is that LL is 
resource conscious logic. We can distinguish the 
information transformation and the state change produced 
by the service. Meanwhile, we can perform planning by 
using both qualitative and quantitative non-functional 
attributes. Because of soundness of the logic fragment, the 
correctness of composite services is guaranteed with 
respective to the initial specifications. Completeness of the 
logic fragment ensures that all compassable solutions can 
be found. 

The service profile can be translated into LL axioms 
and LL sequences. In OWL-S, the information about Web 
services is presented by OWL-S classes and properties. 
They are translated into LL propositions referring to the 
specific classes and properties. The meaning of the 
propositions and the semantic relationships among the 
propositions are defined by the ontology relationships. 
After the service profile is translated into LL axioms and 
LL sequences, the next step is the negotiation among the 
agents in LL. 

Negotiation is an interactive process involving partial 
deduction and LL theorem proving [4]. Partial deduction is 
applied as a method of deducing sub problems. Generally, a 
request to a composite service (including functionalities and 
non-functional attributes) can be expressed by the following 
LL formula: 

ncba EFOPI Δ⊗⊗⊗−⊗−ΔΓΓ )))()((|;,     (1) 

Where, aΓ and bΓ are sets of extra logical axioms 

representing available value-added Web services and core 

services, respectively. cΔ  is a conjunction of non-

functional constraints. nΔ  is a conjunction of non-

functional results. ⊗  is multiplicative conjunction. For 

example, A ⊗ B denotes that the literals A and B are 
consumed or achieved simultaneously. −  is linear 
implication. For example, A − B means that the goal B is 
achievable only when resource A is available. A LL 
sequence is divided into two parts by symbol −| . For 

example, A −| B means that the goal B can be achieved by 

consuming the resource A. ))()( EFOPI ⊗⊗−⊗   is a 

functionality description of the required service. I represent 

a set of input parameters for the service and O represents a 
set of output parameters produced by the service. P and F 
are multiplicative conjunctions of preconditions and effects, 
respectively. E presents an exception. Intuitively, the 
formula can be explained as follows: Given a set of 
available services and non-functional attributes, we try to 
find a combination of services that computes O from I as 
well as that changes the world state from P to F. 

Partial deduction steps as inference figures are defined in 
LL. While using these inference figures instead of basic LL 
rules, we can achieve more efficient proof search and 
higher efficiency. Partial deduction is known as one of 
optimization techniques in logic programming. Its basic 
idea is as follows: Given a specification, partial deduction 
derives a new (more specific) specification while preserving 
the meaning of the original one. We can use partial 
deduction to extract the maximum information from 
incomplete knowledge in the sense of the following 
specialization inference rule. Following is the 
corresponding functional specification of what a rule 
specialization process is. The extension to specialization of 
the agent’s bases is straight forward formula (2). 

BBS →:  



 ∗++−

=
otherwisea

pPrrRS
aS

))(})'{},'{}{((
)(      (2) 
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where, B is a set of agents. We note agents as pairs a=(R, P), 
where R is a set of LL inference rules and P is a set of 
literals (agent states). In other words, the specialization of a 
agent’s rule base consists of the exhaustive specialization of 
its rules. Rules that only have one condition appearing in 
the set of literals will be eliminated and a new literal will be 
added. This new literal will be used again to specialize the 
agent. The process will finish when the agent has no rule 
containing on its conditions. 

The following LL inference rules [6], Rb(Li) and Rf(Li), 
are defined for partial deduction back (3) and forward (4) 
chaining steps, respectively. 

))(
|

| λ（ib LR
CAS
CBS

⊗−
⊗−                        (3)                     

))((
|

| λif LR
GCB
GCA

−⊗
−⊗                        (4) 

where A, B, and C are LL formulae. Li is a labeling of a 
particular LL axiom representing a agent’s capability. Rb(Li) 
and Rf(Li) apply clause Li to move the initial state towards 
the goal state or the other way around. In formulae (4), 

CA ⊗  and CB ⊗  denote goals G and G’, respectively. 
It encodes that, if there is an extralogical axiom AB −−| ,  
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then goal G can be changed to G’. In formulae (5), CB ⊗  

and CA ⊗  denote state S and S’, respectively. It encodes 
that, if there is an extralogical axiom AB −−| , then initial 

state S can be changed to S’. 

Additionally, we assume that a a1, a2 ……. is an 

ordered set of constants, λ λ1, λ2……… is an ordered set of 
variables, [a/λ] denotes substitution, and λ = λ’[a/λ]. When 
substitution is applied, elements in a and λ are mapped in 
the order they appear in the ordered sets. These sets must 
have the same number of elements.  

The implementation of LL negotiation among the agents 
is based on Lygon[7]. Lygon is a LL-based logic 
programming language, and can be viewed as Prolog 
extended with features derived from LL. These features 
include a clean declarative notion of state and the ability to 
express problems involving concurrency. As an abstracted 
language framework, Lygon can be implemented and 
expended in Java. 

The application of Lygon to agent-oriented system is a 
new aspect. Since Lygon is suitable for concurrent 
programming, modeling actions, representing states, and 
searching, it is natural to use Lygon for working with the 
WSES. All LL inference rules can be implemented in 
Lygon. Lygon uses top-down computation, that is, a 
computation begins with a goal and seeks to prove it using 
the program. In our work, Lygon (version 0.7) written in 
fairly standard Prolog is used and should be easy to port to 
other Prolog systems. Lygon syntax is described in Table 1. 

 
Table 1. Grammar for the Lygon. 

 

G::=G ⊗ G| G ⊕ G| G G G G !G |negD|1| | |A| 
negA 
D::=[linear](A1 A2 … An<-G) 

Top        1  One   
Bottom     0  Zero  

   Provable in any context 

⊗   Provable only in empty context 
   Cannot be proved, but can be weakened away 

⊕   Not provable 
 

When a agent has to compose a new service, sub-
services are generated. The sub-services are distributed 
among the partners and treated as offers to other agents. 
Semantic descriptions of the existing services are translated 
into extra logical axioms of LL, by applying partial 
deduction to find partial solutions. Ontology is used to 
reason over the Semantics of Web services’ inputs and 
outputs. Partial solutions can be extended through our Web 
service emergent framework until a complete solution to be 
found 

III. SIMULATION RESULTS AND ANALYSIS  

This simulation work implements two different 
scenarios and comparison between two experiment settings 
is conducted: WSES (agent) and OWL-S workflow 
composition with agent (non-agent). Because there is no 
standard testing data sets, the matching service data and 
partial deduction are generated randomly, which are 
assigned to the agents for testing the characteristics of 
service emergence. We make a set of common web service 
resources (which contains 500 different resource vectors). 

In the simulation, the user request is the abstracted 
OWL-S information. The simulation is the procedure to 
generate a composite service with inputs and outputs 
according to the request. The simulation evaluates the 
adaptation and evolution from response time. Fig. 1 shows 
how service request rate changes with simulation time 
during 240 minutes. The simulation results show that the 
WSES can adapt and evolve to meet with user’s requests, as 
shown in Fig.2  
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Fig. 1. Change in service request. 
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Fig. 2. Response time of requests. 

 
In Fig. 2, response time represents the efficiency of Web 
service emergence. In all 240 minutes, response time slowly 
decreases with agent. While with agent, at the beginning, 
response time becomes very high to be 220ms. When the 
request of the WSES changes, With the time passing by, the 
agents incline to high effective Web services. Finally, the 
response time decreases dramatically, until it reaches the 
minimum value to be about 50 ms. Web service 
management will be self-evolution based on the mechanism 
of selecting the superior and eliminating the inferior. 

The above simulation results show that WSES achieves 
built-in mechanisms to support some key features of 
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systemic systems such as adaptability, self-evolution, self-
organization, and survivability.  

IV. CONCLUSIONS AND FURTHER WORK  

Web service, as next generation promising infrastructure 
established in the Internet, has caused extensive attention 
from industry and academy circles around the world.  The 
emphasis at next generation Web service composition shifts 
to dynamic self-composition. Requirements for these 
systems resemble the characteristics of systemic intelligent 
system. Inspired by this resemblance, we introduce the 
concept of Web service emergence. Then, the WSES is 
designed based on the mechanism of systemic intelligence. 
A novel method for automatic Web service composition and 
management is developed through Web services emergence. 
It exhibits desirable system characteristics such as self-
organization, evolution, scalability, and adaptability. 

The next work is on issues about improving the 
efficiency of both the agents’ negotiation and the Web 
service emergence. Usually, the amount of the available 
Web services and the size of ontology models are huge. 
Therefore, it is necessary to reduce the search space during 
problem solving. In addition, more approaches will be 

developed to evaluate the WSES for automatic Web service 
composition and management.. 
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