
 A Method of E-Service Workflow Composition Based on Linear Logic
Inference Rules

Shan Zhou
 School of Electrical Engineering and Information

ChangChun institute of Technology
 ChangChun, China

e-mail: 715711990@qq.com

Fangyu Zhang
College of Information Sciences and Technology,

jilin University
 changchun, China

 zhangfangyu11@163.com

Abstract—The paper proposes a method for semantic message
matching in automatic service composition. It develops a
framework in which the exported message description and
behavior description of a service, and represents the behavior
of a service with a finite state machine. Since the service
interface definition can be represented by ontology concepts,
the internal representation language enables us to define some
issues required by service composition formally, qualitative
and quantitative constraints plus reasoning on concepts, and
the service behavior can be represented using linear logic
formulas, so the inference rules of linear logic can check the
match-ability and satisfy-ability of service message.

Keywords- E-service; composition; linear logic; Workflow

I. INTRODUCTION

With the explosive growth of Internet, more enterprises
are providing various E-services for collaborative commerce
online to achieve competitive advantages. Services are self-
contained, modular applications that can be described,
published, located, and accessed over network by using open
standards. The functionality of the individual service is
limited and cannot satisfy some practical requirements. The
potential of services can only be achieved if they are used to
dynamically compose some new services that provide more
sophisticated functionalities compared to existing ones [1].

The service composition is a highly complex task, and it
is already beyond the human capability to deal with the
whole process manually. Rao et al.[2] proposed a method for
automatic composition of Semantic Web services using
Linear Logic (LL) [3] theorem proving. The services are
presented by extralogical axioms and proofs in LL. A
process calculus to present the process model of the
composite service is used. The above protocols are based on
a centralized broker that manages the service composition
process. The drawback is that if a huge number of users
attempt to access an increasing number of various services
distributed over the network, the broker becomes quickly a
bottleneck.

Also, agent-based techniques[4] have been proved to be
feasible to realize the automatic systems of Web services.
Agents are envisioned for automatic discovery, execution,
and integration of Web services. However, no mature
method has been proposed to manage birth, death, migration,

stability, and communication processes of enormous agents.
They can not meet with autonomous management, evolution,
and adaptation of the next-generation Web service [5].

 We describe a method for automated E-service
composition which is based on the proof search in
(propositional) multiplicative intuitionistic fragment of
Linear Logic. Given a set of existing web services and a set
of functionality and non-functionality attributes, the method
finds a composition of atomic services that satisfies the user
requirements. a description of existing web services (written
in WSDL) is translated into extralogical axioms in Linear
Logic, and the requirements to the composite services are
specified in form of a LL sequent to be proven. Second, we
use a MILL theorem prover to determine whether the
requirements can be fulfilled by the composition of existing
atomic service. If it is possible then the last step is to
construct flow models (written in BPEL4WS) from the
generated proofs. We assume that the composite service is
ready to be executed when the flow model and description
of each atomic services are given. Because of soundness of
MILL correctness of composite services is guaranteed with
respect to initial specification. Completeness of MILL
ensures that all composable solutions would be found. Our
method can be regarded as an extension of the service
composition method using Structural Synthesis of Programs
proposed. The difference is that the method used in this Web
Service Description Process Description Proof Axioms in
LL.

The process of service composition paper considers also
the quantitative and qualitative constraints in addition to the
structural information of services. This paper is focusing on
the second step of the composition process, namely
presentation and proof using LL. We assume that WSDL
presentation of services has been translated into a set of LL
axioms by a compiler.

II. LINEAR LOGIC-BASED IMPLEMENTATION OF E-
SERVICE COMPOSITION

An e-service is a software artifact that interacts with its
clients in order to perform a specified task. In abstract
model, the client can interact with the e-service instance by
repeatedly choosing an action and waiting for either the
fulfillment of the specific task, or the return of some

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0642

information. On the basis of the information returned, the
client chooses the next action to invoke. The workflow can
be used to realize a target e-service requested by the client,
not simply by selecting a member of the community to
which delegate the target e-service actions, but more
generally by suitably “composing” parts of e-service
instances in the workflow in order to obtain a virtual e-
Service which “is coherent” with the target one..

E-service composition is the cooperation among
service resources. Each agent should negotiate with others
based on the capabilities that can be executed. We take
advantage of full intuitionist LL. To use LL theorem
proving as service composition negotiation is that LL is
resource conscious logic. We can distinguish the
information transformation and the state change produced
by the service. Meanwhile, we can perform planning by
using both qualitative and quantitative non-functional
attributes. Because of soundness of the logic fragment, the
correctness of composite services is guaranteed with
respective to the initial specifications. Completeness of the
logic fragment ensures that all compassable solutions can
be found.

The service profile can be translated into LL axioms
and LL sequences. In OWL-S, the information about Web
services is presented by OWL-S classes and properties.
They are translated into LL propositions referring to the
specific classes and properties. The meaning of the
propositions and the semantic relationships among the
propositions are defined by the ontology relationships.
After the service profile is translated into LL axioms and
LL sequences, the next step is the negotiation among the
agents in LL.

Negotiation is an interactive process involving partial
deduction and LL theorem proving [4]. Partial deduction is
applied as a method of deducing sub problems. Generally, a
request to a composite service (including functionalities and
non-functional attributes) can be expressed by the following
LL formula:

ncba EFOPI Δ⊗⊗⊗−⊗−ΔΓΓ)))()((|;,  (1)

Where, aΓ and bΓ are sets of extra logical axioms

representing available value-added Web services and core

services, respectively. cΔ is a conjunction of non-

functional constraints. nΔ is a conjunction of non-

functional results. ⊗ is multiplicative conjunction. For

example, A ⊗ B denotes that the literals A and B are
consumed or achieved simultaneously. − is linear
implication. For example, A − B means that the goal B is
achievable only when resource A is available. A LL
sequence is divided into two parts by symbol −| . For

example, A −| B means that the goal B can be achieved by

consuming the resource A.))()(EFOPI ⊗⊗−⊗  is a

functionality description of the required service. I represent

a set of input parameters for the service and O represents a
set of output parameters produced by the service. P and F
are multiplicative conjunctions of preconditions and effects,
respectively. E presents an exception. Intuitively, the
formula can be explained as follows: Given a set of
available services and non-functional attributes, we try to
find a combination of services that computes O from I as
well as that changes the world state from P to F.

Partial deduction steps as inference figures are defined in
LL. While using these inference figures instead of basic LL
rules, we can achieve more efficient proof search and
higher efficiency. Partial deduction is known as one of
optimization techniques in logic programming. Its basic
idea is as follows: Given a specification, partial deduction
derives a new (more specific) specification while preserving
the meaning of the original one. We can use partial
deduction to extract the maximum information from
incomplete knowledge in the sense of the following
specialization inference rule. Following is the
corresponding functional specification of what a rule
specialization process is. The extension to specialization of
the agent’s bases is straight forward formula (2).

BBS →:



 ∗++−

=
otherwisea

pPrrRS
aS

))(})'{},'{}{((
)((2)

RrandPpandPif ∈∃∈∃≠ φ(*)

.')','(),(rrandprprSthatsuch R ≠=

where, B is a set of agents. We note agents as pairs a=(R, P),
where R is a set of LL inference rules and P is a set of
literals (agent states). In other words, the specialization of a
agent’s rule base consists of the exhaustive specialization of
its rules. Rules that only have one condition appearing in
the set of literals will be eliminated and a new literal will be
added. This new literal will be used again to specialize the
agent. The process will finish when the agent has no rule
containing on its conditions.

The following LL inference rules [6], Rb(Li) and Rf(Li),
are defined for partial deduction back (3) and forward (4)
chaining steps, respectively.

))(
|

| λ（ib LR
CAS
CBS

⊗−
⊗− (3)

))((
|

| λif LR
GCB
GCA

−⊗
−⊗ (4)

where A, B, and C are LL formulae. Li is a labeling of a
particular LL axiom representing a agent’s capability. Rb(Li)
and Rf(Li) apply clause Li to move the initial state towards
the goal state or the other way around. In formulae (4),

CA ⊗ and CB ⊗ denote goals G and G’, respectively.
It encodes that, if there is an extralogical axiom AB −−| ,

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0643

then goal G can be changed to G’. In formulae (5), CB ⊗

and CA ⊗ denote state S and S’, respectively. It encodes
that, if there is an extralogical axiom AB −−| , then initial

state S can be changed to S’.

Additionally, we assume that a a1, a2 ……. is an

ordered set of constants, λ λ1, λ2……… is an ordered set of
variables, [a/λ] denotes substitution, and λ = λ’[a/λ]. When
substitution is applied, elements in a and λ are mapped in
the order they appear in the ordered sets. These sets must
have the same number of elements.

The implementation of LL negotiation among the agents
is based on Lygon[7]. Lygon is a LL-based logic
programming language, and can be viewed as Prolog
extended with features derived from LL. These features
include a clean declarative notion of state and the ability to
express problems involving concurrency. As an abstracted
language framework, Lygon can be implemented and
expended in Java.

The application of Lygon to agent-oriented system is a
new aspect. Since Lygon is suitable for concurrent
programming, modeling actions, representing states, and
searching, it is natural to use Lygon for working with the
WSES. All LL inference rules can be implemented in
Lygon. Lygon uses top-down computation, that is, a
computation begins with a goal and seeks to prove it using
the program. In our work, Lygon (version 0.7) written in
fairly standard Prolog is used and should be easy to port to
other Prolog systems. Lygon syntax is described in Table 1.

Table 1. Grammar for the Lygon.

G::=G ⊗ G| G ⊕ G| G G G G !G |negD|1| | |A|
negA
D::=[linear](A1 A2 … An<-G)

Top 1 One
Bottom 0 Zero

 Provable in any context

⊗ Provable only in empty context
 Cannot be proved, but can be weakened away

⊕ Not provable

When a agent has to compose a new service, sub-
services are generated. The sub-services are distributed
among the partners and treated as offers to other agents.
Semantic descriptions of the existing services are translated
into extra logical axioms of LL, by applying partial
deduction to find partial solutions. Ontology is used to
reason over the Semantics of Web services’ inputs and
outputs. Partial solutions can be extended through our Web
service emergent framework until a complete solution to be
found

III. SIMULATION RESULTS AND ANALYSIS

This simulation work implements two different
scenarios and comparison between two experiment settings
is conducted: WSES (agent) and OWL-S workflow
composition with agent (non-agent). Because there is no
standard testing data sets, the matching service data and
partial deduction are generated randomly, which are
assigned to the agents for testing the characteristics of
service emergence. We make a set of common web service
resources (which contains 500 different resource vectors).

In the simulation, the user request is the abstracted
OWL-S information. The simulation is the procedure to
generate a composite service with inputs and outputs
according to the request. The simulation evaluates the
adaptation and evolution from response time. Fig. 1 shows
how service request rate changes with simulation time
during 240 minutes. The simulation results show that the
WSES can adapt and evolve to meet with user’s requests, as
shown in Fig.2

R
eq

ue
st

s/
se

c

(min)0 30 60 90 120 150 180 210 240
0

5

10

15

20

R
eq

ue
st

s/
se

c

(min)

R
eq

ue
st

s/
se

c

(min)0 30 60 90 120 150 180 210 240
0

5

10

15

20

Fig. 1. Change in service request.

R
es

po
ns

e
 ti

m
e

of

re
qu

es
ts

 (m
s)

(min)0 30 60 90 120 150 180 210 240
0

60

120

180

240

300
Agent

Bio-entity

R
es

po
ns

e
 ti

m
e

of

re
qu

es
ts

 (m
s)

(min)0 30 60 90 120 150 180 210 240
0

60

120

180

240

300
Agent

Bio-entity

Agent

Bio-entity

Fig. 2. Response time of requests.

In Fig. 2, response time represents the efficiency of Web
service emergence. In all 240 minutes, response time slowly
decreases with agent. While with agent, at the beginning,
response time becomes very high to be 220ms. When the
request of the WSES changes, With the time passing by, the
agents incline to high effective Web services. Finally, the
response time decreases dramatically, until it reaches the
minimum value to be about 50 ms. Web service
management will be self-evolution based on the mechanism
of selecting the superior and eliminating the inferior.

The above simulation results show that WSES achieves
built-in mechanisms to support some key features of

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0644

systemic systems such as adaptability, self-evolution, self-
organization, and survivability.

IV. CONCLUSIONS AND FURTHER WORK

Web service, as next generation promising infrastructure
established in the Internet, has caused extensive attention
from industry and academy circles around the world. The
emphasis at next generation Web service composition shifts
to dynamic self-composition. Requirements for these
systems resemble the characteristics of systemic intelligent
system. Inspired by this resemblance, we introduce the
concept of Web service emergence. Then, the WSES is
designed based on the mechanism of systemic intelligence.
A novel method for automatic Web service composition and
management is developed through Web services emergence.
It exhibits desirable system characteristics such as self-
organization, evolution, scalability, and adaptability.

The next work is on issues about improving the
efficiency of both the agents’ negotiation and the Web
service emergence. Usually, the amount of the available
Web services and the size of ontology models are huge.
Therefore, it is necessary to reduce the search space during
problem solving. In addition, more approaches will be

developed to evaluate the WSES for automatic Web service
composition and management..

REFERENCES
[1] S. McIlraith, T. C. Son, and H. Zeng, Semantic Web services, IEEE

Intelligent Systems 16(2) (2001) 46-53.

[2] S. Thakkar, C. Knoblock, and J. L. Ambite, A view integration
approach to dynamic composition of Web services, in: Proceedings
of ICAPS’03 Workshop on Planning for Web Services (Trento, Italy,
2003) 228-235.

[3] J. S. Hodas and D. Miller, Logic programming in a fragment of
intuitionistic Linear Logic, Information and Computation 110(2)
(1994) 327-365.

[4] T. J. Norman, A. Preece, S. Chalmers, N. R. Jennings, M. M. Luck,
V. D. Dang, T. D. Nguyen, V. Deora, J. Shao, W. A. Gray, and N. J.
Fiddian, Agent-based formation of virtual organizations, Knowledge-
Based Systems 17(2-4) (2004) 103-111.

[5] Z. G. Hai, The future interconnection environment, IEEE Computer
38(4) (2005) 27-33.

[6] P. Küngas and M. Matskin, Symbolic negotiation with Linear Logic,
Lecture Notes in Computer Science 3259 (Springer-Verlag, Berlin,
2004) 71-88.

[7] M. Winikoff and J. Harland, Implementing the Linear Logic
programming language Lygon, in: Proceedings of the International
Logic Programming Symposium (Portland, USA, 1995) 66-80.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0645

