
A Summary of Comparative Study of Software Reliability

Chong Peng, Yujie Meng, Liyun Lan, Lun Wang
School of Mechanical Engineering and Automation, Beihang University, Beijing, China

e-mail: pch@buaa.edu.cn, myj15873@163.com

Abstract—With the integration of informatization and
industrialization, the application of software is getting more
and more extensive and plays a powerful role in many facilities.
At the same time, Software failures cause tremendous losses,
thus ensuring the reliability of software becomes increasingly
important. The basic conceptions of software reliability are put
forward in this paper, and comparative analysis on the
research status at home and abroad are studied. Meanwhile,
the perspective of the further progress of software reliability is
made. (Abstract)

Keywords- software reliability; integration of informatization
and industrialization; comparative analysis

I. INTRODUCTION

Nowadays, software plays an increasingly important role
in more industries. With the modern industrial systems
growing more complex, assurance of software reliability
becomes more difficult. At present, though a large number of
researches have been carried out and plenty of applications
have been put into use, there is still a long way to go in the
field of software reliability.

II. DEFINITION AND IMPORTANCE OF SOFTWARE

RELIABILITY

A. Definition

IEEE Computer Society made a clear definition of
software reliability in 1983, which was accepted as national
standard by National Institute of Standards and Technology
(NIST) in the United States. Later in the year 1989, China
also accepted the definition as national standard. According
to GB/T 11457-95-Software Engineering Terms, the
definition of software reliability is as follows [1]:

• Software reliability is the probability of failure-free
software operation for a specified period of time
under a specified condition. This probability is a
function of the input and usage of the system as well
as the failure existed in software. The system input
will determine whether an existing failure will be
encountered.

• Software reliability is the ability that software
performs the required functions during the
prescriptive period under a specified situation.

B. Differences between Software Reliability and Hardware
Reliability

A large percentage of hardware failure is due to
equipment wear and material aging, while software will not
change as time goes on, namely never wear.

The critical factor of hardware reliability is time, which
can be affected by the process of design, manufacture, and
service. Nevertheless, source code is the critical factor of
software reliability. As for embedded software, the fault of
the interface between hardware and software is a major
factor resulting in failure [2].

C. Importance of Software Reliability

1) Software reliability is an essential condition to
guarantee normal system operation

The effect of software is getting more and more
influential as an increasing number of digital devices are
putting into use. In the aerospace domain, the scale of source
code in the airborne software reaches million lines. However,
the sharp increase of scale and complexity in software also
gives rise to the increase of failure number. One study shows,
the codes written by professional software developers would
have 6 faults every thousand lines [3]. Following this fault
density, software with a million line codes would have as
many as 6000 faults. What is worse, the density of fault
increases geometrically as the scale of software grows. The
increasing number of faults makes fault location more
difficult and the repair cost rise dramatically. Besides,
software failure can cause serious consequences. The most
famous examples are: in 1962, MARINER I sent by the
United States to Venus lost control 293 seconds after being
launched. NASA owed this fault to the wrong code line in
the Fortran language (missing a hyphen), causing the cost
loss as high as 80 million dollars. The data from the famous
safety agency SecurityFocus shows that, the most serious
power outage in history occurred in the United States and
parts of Canada on August 14th, 2003 was resulted from
software failure. Actually, serious accidents caused by
software failure are by no means only these two. These
accidents teach us a lesson that software reliability must be
taken into consideration before devices been put into use.

2) Software reliability becomes the bottleneck to
improve system reliability

Software plays an increasing part in systems. For
example, every time the fighter aircraft updates a new
generation, the functions realized by software doubled [3].
Software reliability is directly related to system reliability.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0650

Compared to hardware, software cannot make system
recover via repairing or changing components but re-
designing. Software reliability cannot be guaranteed by
redundancy, and methods to verify its reliability are not like
hardware which has a complete theoretical system. In
general, ensuring software reliability is more difficult than
that of hardware. Even the software system in NASA, its
reliability is an order of magnitude lower than hardware.
Hence, software reliability seriously affects the reliability of
the whole system. In order to improve system reliability,
software reliability must be paid great attention to.

III. REVIEW ON SOFTWARE RELIABILITY

Phase one: 1950-1967 Subject sprout period, software
reliability did not attract attention.

Phase two: 1968-1987 Subject formation period,
Software Engineering was established and developed,
mathematical models of software reliability began to emerge.

Phase three: 1988-now Subject developing period,
Software Reliability Engineering was put forward, software
reliability transits from theoretical research to engineering
application. Increasingly importance has been attached to
software reliability, our country promulgated GJB/Z 102-97
Software Reliability Security Design Criteria in the year
1997 as well [3].

IV. DEVELOPMENT OF SOFTWARE RELIABILITY

A. Abroad Development Status

1) Theoretical research
The first paper on software reliability is the Birth and

Death Process raised by Hudon in 1967 [4], this model
exported Weibull Distribution based on Mean Time between
Failures (MTBF) [5].

From 1970s to early 1980s, the study of software
reliability mainly concentrated in the comparison and
selection of models, some famous models got used and
improved. In this period, software reliability models had
some characteristics such as correctness verification-oriented,
using the stochastic modeling method, introducing statistical
analysis technique to fault data, measuring software
reliability by setting variables [6]. In 1972, Jelinski and
Moranda proposed the famous Jelinski-Moranda model
based on software failure rate, which appertains MTBF
model and uses time dimension and maximum likelihood
estimation [7-8]. Other models proposed later were mostly
the improvements of J-M model by making the unreasonable
hypothesis reasonable so that the model would be more
realistic [9]. In 1975, Littlewood set software reliability
model aimed at modular program [10], pointing that
transmission and control among modules follow the Markov
Process and it could be regarded a white-box model. In 1979,
Goel and Okumoto introduced a software fault model using
simple Nonhomogeneous Poisson Process (NHPP) [11], and
made some progress to the previous models describing
software failure process [6].

Since 1990s, rapid progress has been made on the study
of software reliability, research includes software reliability
design, reliability testing and management, collection of

reliability data, reliability prognosis and reliability problems
of hardware- software-hybrid systems [5,12].

Now, software reliability modeling is still a hotspot, e.g.
reliability models based on neural network, reliability models
based on Support Vector Machine (SVM) and other new
kinds of models.

2) Engineering practice
Though the development status of engineering practice in

software reliability is not so flourish as theoretical research,
it has made some progress. On the website delphion one can
get the patents authorized in the United States concerning
software reliability, shown in the picture below:

Figure 1. Growth trend of patent number

As is shown in Figure 1, the number of patents related to
software reliability has a growing trend, that is to say theory
has begun its march to practice.

Besides, more and more applications are made in
production field about software reliability, especially in
aerospace field and automobile industry. So far, reliability
and safety management mechanism that faces the whole
software life cycle systematically has been initially formed at
abroad. Both NASA and ESA have published related
assurance standard and instruction manual about software
products. NASA requires that quantified risk analysis should
be used to analyze the technical measures, reliability and
safety of the mission-critical software, thus offering technical
support for making decisions. As for the automobile industry,
active methods are made to locate the problems of software
quality, e.g. Motor Industry Software Reliability Association
released the first edition of a series of recommended
programming practices called MISRA-C: 2004 in the year
1998. 128 rules aimed at editing the C programing language
more safely were included in this edition. From then on,
these guiding lines have not only played an important role in
automobile industry, but also permeated into nearly every
application from aerospace to mining field.

Though the situation is optimistic, problems exist. The
practice of software reliability engineering is not relatively
independent from software engineering. There is no
systematic approach and it brings considerable controversy
in different software planning.

B. Domestic Development Status

1) Theoretical research
The study on software reliability established relatively

late in China in the 1980s. Scholars like Xizi Huang,

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0651

Wangmei Chen, Kaiyuan Cai has made useful exploration to
software reliability modeling and software reliability
distribution and management. Breakthroughs has been made
in software fault avoidance and tolerance technology,
reliability assess tools, reliability test and reliability metrics
[12,13]. In recent years, theoretical research on software
reliability is flourishing, narrowing the gap with abroad.

Though domestic study on software reliability is
booming, the disparities with abroad is obvious. The main
gaps are as follows: a. Shortage on study powers; b. There is
no powerful institution sparing no effort to support the study
on software reliability; c. Software reliability modeling is the
concentration while other aspects are very weak; d. High-
level achievements which have international influence are
rare [13].

2) Engineering practice
Yiping Yao used to use his own software reliability

assessment tool to assess the software reliability of ACT
verification aircraft. Kaiyuan Cai also applied his own fuzzy
software reliability model to ACT [13]. In patent respect,
patents related to software reliability are only eleven, which
all applied after the year 2000. Nine of them were applied
during 2010-2011. There is a long way from abroad since the
number of patents is small and our engineering practice
started late.

Since China Software Testing Center was found in 1990,
each province has established its own software testing center
gradually. Theses testing centers are used to test the quality
of software, hardware and network security. During the
development history of the past 20 years, China testing has
formed a service system with vertical and horizontal
integration, which covers the whole process of the project
life cycle and makes significant efforts to guarantee software
reliability. In the production process, quality of software is
getting more and more valued.

Though progress has been made, domestic practice of
software reliability still has a large blank. And just because
of this, it has a huge potential.

V. EXISTING PROBLEMS AND FUTURE DIRECTIONS

A. Existing Problems

In spite of the breakthroughs made in the study on
software reliability, many problems still exist [5,12,14,15]:

• Viewpoints, methods and tools
Now studies are mainly based on probability theory and

mathematical statistics, which is not that proper. Software
reliability theories and technologies need new mathematical
tools, such as pattern recognition, artificial intelligence, petri
net and so on. Besides, it requires nutrients from other
branches of systematic science, especially high-level ones.

• Software reliability models
Hundreds of models established all have different extent

of limitations. There is no recognized system for the
classification of models and no universal analytical model.

• The application of software reliability models
The predicting outcomes are not consistent with each

other when using different software reliability models. How

to effectively put models into realistic software developing
process is another problem.

• Data
Building software failure database to support software

tests and collecting failure data automatically are problems
needed to be solved.

• Generate software testing case automatically
Generating software testing case automatically in all

kinds of software testing tools is waiting to be perfected.
• Hardware-software-hybrid system reliability
Software reliability framework can be made using

mathematical methods similar to hardware. Failure Mode
and Effects Analysis (FMEA) and Failure Mode Effects and
Criticality Analysis (FMECA) perform well in hardware
system, yet they are not enough for software system. The
Fault Tree provides graphical and logical framework, which
can offer a united modeling plan for hardware-software
collaborative design. Modeling of hardware-software-hybrid
reliability is one of the hotspots.

• Industrial practice
At present, software reliability engineering is not being

widely used. The main reason is that the cost-effectiveness is
unconspicuous. Many companies are not willing to put too
much time and money into failure data collecting. Hence,
reliability standard cannot be obtained, experience and
lessons cannot be drawn from the former applications either.
Usually the priority of reliability is lower than functionality
and creativity in a product. When feel pressured for product
release time, reliability is always the first property to be
compressed.

• Software architecture
Fault isolation is the main consideration in designing

software architecture. Lowering the dependency among
different software blocks makes their reliability independent,
so that they will not interact. New software architecture
includes cross-platform technology, open-world software,
service-oriented architecture and web application. Although
there are some modeling methods to estimate the reliability
of specific web systems, software reliability engineering
technologies for general web systems and other service-
oriented architectures need more research [16,17,18,19].

B. Future Directions

Software reliability modeling is becoming complete
gradually. In order to make software reliability analysis and
prognosis more accurate, people use correction, deviation
rectification, weighted combination etc. to improve
traditional models. Meanwhile, analyzing software reliability
using artificial intelligence and simulation technique etc. are
other notable trends.

Future directions of software reliability mainly include 5
aspects as follows:

• Software architecture
Accomplish software engineering based on components.

Accomplish the reuse of software by taking advantage of the
existing components.

• Software design

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0652

Accomplish software reliability design. Research is
needed in the following stages: fault confinement, fault
detection, diagnosis, reconfiguration, recovery, restart, repair
and reintegration. Design for reliability techniques can be
further pursued in four different areas: fault avoidance, fault
detection, masking redundancy, and dynamic redundancy.
Software design mainly considers cost-effectiveness, which
calls for better reliability while no spare cost.

• Reliability testing
Bring software testing and software reliability together,

so that the reliability can be accurately measured.
• Metrics for reliability prediction
We are supposed to better collect and use metrics via

various tools. At the moment, metrics and data collection
process is one-way and open-loop so that they cannot
provide feedbacks. In the future, we expect close-loop
process which can provide information to predictable reliable
software.

• Reliability for specific software applications
In some specific domains such as the service industry,

software plays such an increasingly significant role that its
reliability requires insurance. Service-oriented design is also
applied to Software Engineering. Moreover, open system
approach is another trend in software applications.

VI. CONCLUSION

In recent years, study on software reliability has made
considerable progress. However, the gap between abroad and
domestic is not small, especially engineering practice. There
is still a long way to go both domestic and abroad. So,
opportunities and challenges coexist, this area calls for
further developments and improvements.

ACKNOWLEDGMENT

This material is based upon work supported by the
National Science and Technology Major Project “High-
Grade CNC Machine Tools and Basic Manufacturing
Equipments” (Grant No. 2011ZX04016-021) and the Special
Items Fund of Beijing Municipal Commission of Education.

REFERENCES

[1] GB/T 11457-95 Software Engineering Terms.

[2] Yichen Wang. Test and Fault Diagnosis of NCS Software. Plant
Maintenance Engineering 2005,2:36-37.

[3] Minyan Lu. Software Reliability Engineering. National Defense
Industry Press，2011.

[4] Hudon G R. Program Errors as a Birth and Death Process. Report SP-
3011, SsntaMonica, CA:System Development Corporation, 1967.

[5] Yun Liu, Wei Zhao. Research and Progress in Software Reliability.
Microcomputer Development, 2003(2):1-15.

[6] Bangqing Qiu. Model Study and Overview of Software Reliability
Abroad. Quality and Reliability, 1994(1): 14-18.

[7] Z. Jelinski, P. Moranda. Software Reliability Research: Statistical
Computer Performance Evaluation. N.Y. and London: Academic
Press, 1972: 465-484.

[8] Yong Cao. Software Reliability Model Based on Fractal and
Mathematic Mechanization of Program Correctness Proof. University
of Electronic Science and Technology of China, Doctoral
Dissertation，2010.

[9] Ming Han. Software Reliability Models. Beijing University of
Technology M.E.Dissertation, 2007.

[10] B. Littlewood. A Reliability model for systems with Markov structure.
Applied Statistics, 1975, 24: 172–177.

[11] A.L. Goel, K. Okumoto. Time-Dependent Error Detection Rate
Model for Software and other Performance Measures. IEEE
Transactions on Reliability, 1979, 28(3): 206-211.

[12] Feng Yin. The Development Situation and Prospect of Hot Technique
Problems of Software Engineering. Journal of Changsha University，
2006，20(5)：45-49.

[13] Kaiyuan Cai. Software Reliability: A Personal View.Systems
Engineering and Electronics, 1993, (4)：47-54.

[14] Michael R. Lyu. Software Reliability Engineering: A Roadmap.
FOSE '07 2007 Future of Software Engineering, IEEE Computer
Society Washington, DC, USA. 2007: 153-170

[15] Yanyan Zheng, Wei Guo, Renzuo Xu. Overview of Software
Reliability Engineering.Computer Science，2009，36(2)：20-25.

[16] Bishop J, HorspoolN. Cross-Platform Development: Software That
Lasts. IEEE Computer Society, 2006, 39(10):26-35.

[17] Baresi L, Nitto E, Ghezzi C. Toward Open-World Software: Issues
and Challenges. IEEE Computer Society, 2006, 39(10):36-43.

[18] Margaria T, Steffen B . Service Engineering: Linking Business and
IT.IEEE Computer Society, 2006, 39(10):45-55.

[19] Wenli Wang, Meihui Tang. User-Oriented Reliability Modeling for a
Web System. Proceedings of the 14th International Symposium on
Software Reliability Engineering (ISSRE’03).Denver, Colorado,
November 2003:1-12.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0653

