

Implementation of TCP/NC protocol simulation based on OMNET++

Hongyun Zhang, Wanrong Yu,
Chunqing Wu

School of Computer,
National University of Defense

Technology,
Changsha, 410073, China

E-mail: grandcloud88@gmail.com

Miao Wang
State Key Laboratory of High

Performance Computing,
National University of Defense

Technology,
Changsha, 410073, China

E-mail: mercury.miao@gmail.com

Xiaoping Xu
Department of Scientific Research,

National University of Defense
Technology,

Changsha, 410073, China
E-mail: xuxiaoping@nudt.cn

Abstract—TCP protocol has an awful performance in the
wireless network because of the instability, high BER and long
RTT of the wireless link. How to make wireless transmission
more reliable and efficient has become a hot topic among
relative researches. TCP/NC is a recently proposed protocol
based on network coding and capable of achieving much
higher throughput than TCP over lossy wireless Links. In this
paper, network coding and TCP/NC are outlined firstly. And
then simulation realization of TCP/NC protocol in OMNET++
is described. The performance evaluation of TCP/NC is
conducted in OMNET++. The results show that TCP/NC offers
significant better performance than TCP without affecting the
fairness of data flow.

Keywords-component; network coding; TCP/NC; OMNET++;

I. INTRODUCTION

It is well known that TCP performs poorly over lossy
links prevalently existing in wireless systems [1][2][6]. It is
because that each loss is interpreted as a congestion signal
in TCP. Network coding has emerged as an important
potential approach of operation on wireless network.
TCP/NC incorporates network coding inside the TCP/IP
protocol stack with some minor changes, and achieves much
higher throughput compared to TCP over lossy wireless
links. However, as TCP/NC is not open source, researches
on TCP with network coding are limited.

This paper firstly illuminates the basic idea and
characteristics of TCP/NC, then expatiate the
implementation of TCP/NC in OMNET++. At last, some
simulations are performed and the results indicate that
TCP/NC is practicable and performs much better over lossy
links in efficiency and reliability compared with TCP. Thus
it is concluded that TCP/NC is significant to the theoretical
research and practical applications of interfacing network
coding with TCP. Based on the performance analysis of
TCP/NC, its disadvantages are analyzed and summarized as
well.

II. TCP/NC

Network coding has become a hot research spot since it
was brought forward in 2000 [7][8]. However, it is not clear
how to naturally add network coding to current network
systems until TCP/NC [3]. Based on the concept of
seen(Definition 1), TCP/NC implements a Random Network

Coding(RNC) [9][10] system based on byte stream oriented
network protocol for the first time. It is reported that wireless
transmission has been distinctly improved after using
TCP/NC [4].

TCP/NC embeds the network coding operation in a

separate layer between TCP and IP on the source and
receiver side as shown in Figure 1.

Figure 1. Protocol structure of TCP/NC

The sender side accepts packets from the TCP layer and
puts them into an encoding buffer until it is ACKed by the
receiver side. Every encoded packet is a random linear
combination of the original packets in the encoding buffer.

The main function of the receiver side is decoding. Upon
receiving a linear combination from the sender side, it first
retrieves the coding coefficients from the packet header and
appends them to the basis matrix of its knowledge space.
Then the Gaussian elimination method is adopted to find the
newly seen packet and decoded packet. The newly seen
packet can be ACKed and the newly decoded packet can be
submitted to TCP layer. Figure 2 illustrates an example of
encoding and decoding.

Figure 2. Example of encoding and decoding

Definition 1 (Seeing a packet) [5]: A node is said to have
seen a packet kP , if it has enough information to compute

a linear combination of the form QPk + , where

 >
=

kl ll PQ α with ql F∈α for all kl > . Thus, Q is a

linear combination involving packets with indices larger
than k .

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0676

III. THE DESIGN AND IMPLEMENT OF TCP/NC IN

OMNET++

In OMNET++, designing and developing of protocol is
hierarchical. The work in this paper involves TCP layer, IP
layer and the network coding Layer between them.

The implement of TCP/NC in OMNET++ mainly
includes 7 modules as follows:

1、One packet module. This module is implemented in
NcPacket.msg defining the coding packet: NcPacket.

2、 Two simple modules: EncoderNcLayer and
DecoderNcLayer. Their main functions are encoding and
decoding respectively. They are implemented in
HostNcLayer.ned and SinkNcLayer.ned.

3、 Two compound modules: StandardNcServer and
StandardNcClient. They are standard encoding node and
decoding node using TCP/NC protocol.

4、 Two network modules: SingleFlow and
DoubleFlow. These two modules are defined in test.ned.

Two compound modules generate the standard encoding
and decoding nodes, they interface network coding with TCP
and IP. Two network modules are used to describe the
network topology. Coding packet module and two simple
modules are main modules which implement encoding and
decoding operation and they will be described in detail next.

A. Coding Packet Module
The payload part of a coding packet is a random linear

combination of several TCP segments. Due to the
introduction of a new feedback mechanism of receiving state
based on network coding, the header of the coding packet
should be redesigned. The new structure of the coding packet
header is shown in Figure 3.

Figure 3. The header of coding packet

TABLE I. MEANING OF EVERY FIELD IN CODING PACKET HEADER

Field Meaning
Source and
destination port

Identify the coded packet’s session

Base The first byte that has not been ACKed
n The number of segment involved in the

NcPacket
Starti The starting byte of the ith segment
Endi The ending byte of the ith segment
αi The coefficient used for the ith segment

The typical sizes (in bytes) of the various fields are

signed above them. The meanings of the various fields are
listed in TABLE I. The new designed coding packet is
defined in NcPacket.msg in OMNET++ as shown in TABLE
II.

TABLE II. NCPACKET IN OMNET++

Packet NcPacket ()
1 {
2 unsigned short SrcPort;
3 unsigned short DestPort;
4 uigned int Base;
5 char n;
6 char a[10];
7 unsigned int start[10];
8 unsigned int end[10];
9 }

B. EncoderNcLayer Module
EncoderNcLayer module is the main module of sender

side. It mainly contains four submodules: E_Initialization
module, E_UpPacket Handling module, E_DownPacket
Handling module and Encoding Buffer module. The
structure of EncoderNcLayer is described in Figure 4.

Figure 4. EncoderNcLayer module

1) E_Initialization module:
The main function of E_Initialization module is

initializing finite field (F), coding window (W), encoding
buffer (EB), redundancy factor(R) and some other
parameters.

2) E_UpPacket Handling module:
This module handle packet form TCP layer. If the packet

from TCP is a control packet for connection control, it was
distribute to EU_Control packet handling module. And this
submodule deliver control packet to IP layer without any
treatment.

Encoding buffer construction module pre-processes any
incoming TCP segments before adding it to the encoding
buffer. The purpose of the pre-processing procedure is that
the encoding and decoding operations can be performed at
the granularity of packets instead of individual symbols [11],
and the computational complexity and space required can
also be reduced. Figure 5 shows a typical state of the coding
buffer after pre-processing.

Figure 5. Typical state of coding buffer

Coding packet generation module generates and sends
random linear combinations of the packets which have been
pre-processed by encoding buffer construction module. The
coding packet generation module is described as TABLE III.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0677

TABLE III. NCPACKET GENERATION

EncoderNcLayer:: SendNcPacket ()
1 {
2 NUM +=R;
3 int k = NUM/1;
4 do
5 begin
6 create a new NcPacket;
7 generate a random combination of the packet in

coding window;
8 encapsulate this combination into the new NcPacket;
9 setup the header of NcPacket;
10 setup IPv4ControlInfo of NcPacket;
11 send this NcPacket to IP layer;
12 k = k-1;
13 end
14 until(k < = 0)
15 }

R is the redundancy parameter for the sender side, it is
necessary in order to compensate for the loss rate of the
wireless link.

3) E_DownPacket Handling module:
This module handle packet form IP layer. It has two

submodules: Buffer management module and ED_Control
packet handling module. Just like EU_Control handling
packet module, ED_Control packet handling module deliver
control packet to TCP layer without any treatment.

Buffer management module accomplishes the update,
maintenance and management of coding buffer based on the
last byte of the latest seen packet. A packet should be
removed from the coding buffer if an ACK has arrived
requesting a byte beyond the last byte of that packet.

C. DecoderNcLayer Module
As shown in Figure @@, DecoderNcLayer module is

composed of three main modules: D_Initialization module,
D_UpPacket Handling module, D_DownPacket Handling
module and Decoding Buffer module.

Figure 6. DecoderNcLayer module

1) D_Initialization module:
D_Initialization module initializes some parameters of

receiver side, such as finite field (F), the size of decoding
buffer (EB) and some other parameters of decoder.

2) D_UpPacket Handling module:
This module handle pcket form recever sider TCP layer.it

has two submodules: DU_Control packet handling module
and ACK handling module.

DU_Control packet handling module handle packet like
EU_Control packet handling module. The ACK packet from
TCP layer is distribute to ACK handling module. The value
of ACK_no is send to Decoding buffer management module
by ACK handling module.

3) D_DownPacket Handling module:
This module handle packet form IP layer. It consist of four

submodules: Decoding buffer management module,
DD_Control packet handling module, S_ACK generation
module and Decode module.

DD_Control packet handling module deliver control
packet for connection control to TCP layer without any
change.

Decoding buffer management module is in charge of the
management of decoding buffer. The Decoding buffer
management module can be understood using Figure 7. It
show the receiver side windows in a typical situation. A
packet can be dropped if its last byte is smaller than Base,
and has been delivered to receiver TCP layer, that is, the
packet in area A. The packet containing bytes lager than
Base still will be involved in incoming coding packet.

Figure 7. Decoding buffer management

Decode module performs Gaussian elimination. Before
decoding, decode module firstly retrieves the coding
coefficients from the packet-headers and appends them to the
basis matrix of its knowledge space [5]. After Gaussian
elimination, the oldest unseen byte identified. And S_ACK
generate module will generate a new S_ACK according to
this value. When a new packet is decoded, dummy zero
symbols are pruned and a TCP segment is created to deliver
to the receiver TCP layer.

TABLE IV. NCPACKET DECODING

DecoderNcLayer:: DecodePacket (NcPacket)
1 {
2 remove the NcPacket header and generate a new

coefficients vector;
3 add this new coefficients vector to the existing

coefficients matrix as a new row;
4 perform the first step of Gaussian elimination to update

the set of seen packets;
5 activate S_ACK generation module;
6 if this NcPacket make a segment to been seen
7 {
8 add the payload this NcPacket to the payload

matrix;
9 perform the second step of Gaussian elimination to

update the set of decoded packets;
10 if some TCP segment is decoded, deliver it to TCP

layer;
11 }
12 }

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0678

S_ACK generate module generate the newly S_ACK
packet based on the oldest unseen byte, S_ACK is identical
with TCP ACK packet. The sink thus pretends to have
received the packet even if it cannot be decoded yet.

IV. SIMULATION AND RESULT ANALYSIS

The realization of TCP/NC is base on discrete event
simulation environment OMNET++ and the open source
TCP/IP protocol framework INET. The simulation
environment is built on the Windows operating system. The
version of OMNET++ is 4.2.2 and the version of INET is 2.0.

A. Simulation Environment Setup
The experiment is performed over IEEE 802.11b with a

bit-rate of 1 Mbps, the queue type of wireless interface is
DropTailQueue which the first item stored is the first item
output. The frame capacity of DropTailQueue is 150. NOAH
(No Ad-Hoc Routing Agent)is used as the static routes. We
use FTP protocol in application layer, the apptype of sender
side is TCPSessionApp and receiver side is TCPSinkApp.
The file size of transmission is 40MB.Figure@@ show
SingleFlow network topology and DoubleFlow network
topology used to analysis and test TCP/NC protocol.

Figure 8. Network topology

Two networks (shown as Figure 8) represent two kinds of
situation case. Single data stream represent the situation
where only one TCP flow running in a lossy links, the send
side is client and the receiver side is server. Double data
stream represent the situation where two TCP flow compete
with each other, one flow is start form client1and end with
server1, and the second flow is from client2 to server2.

B. Result Analysis
First we study the variation of goodput with loss rate for

bost TCP/NC and TCP. For TCP/NC the values of R and W
have been chosen by trial and error, to be the one that
maximizes the goodput. The goodput is measured using
outputhook(a kind of measure class in INET framework).
Each point is averaged over 4 or more iterations of such
session, depending on the variability.

Figure 9. Goodput versus loss rate

Figure 9 shows that when the losses is very low, TCP
performs better than TCP/NC, this could be because of the
computational overhead of coding and decoding operation
and the coding header overhead. However TCP/NC is very
robust to losses and reaches a goodput that is close to
capacity compared to TCP’s goodput fall rapidly as losses
increase.

Figure 10. Fairness between TCP/NC and TCP

In order to evaluate the effect of our medication of our
simulate protocol on fairness, we test the fairness of TCP/NC
and TCP In the DoubleFlow network. The loss rate is set to
0% and the redundancy parameter is set to 1 for a fare
comparison. In first case, TCP/NC flow start an t=0.1s, TCP
flow start at t=500s. The simulation is all over in 1200s. The
evaluation result is shown in Figure10. For the second case,
TCP/NC flow competes with each other in one lossy link, the
plot is similar to Figure 10. Both the two cases show that the
effect of introducing the coding layer does not affect fairness.

V. CONCLUSION AND FUTURE WORK

How to combine network coding and TCP to reach their
full potential in lossy link especially wireless link is a hot
and difficult issue. This paper first introduces the problem of
the TCP in the wireless environment and network coding
technology. Then TCP/NC protocol is reviewed briefly,
which first design a coding system that is compatible with
standards TCP. we also elaborate the implementation details
of TCP/NC model in OMNET++ platform. Finally, we
analyze and testing the effectiveness and fairness of TCP/NC
in different network scenarios compared with standard TCP.
The work of this paper provides a new method for
researching how to naturally add network coding to current

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0679

network system, the future work could be to study how to
automatic adjust R and W to adapt to the dynamic change of
lossy rate of wireless link.

REFERENCES

[1] S. R Li, R. W. Yeung, and N. Cai. Linear Network Coding[C]. IEEE

Transactions on Information Theory, 2003, 49, pp:371-381.

[2] George C. Polyzos, George Xylomenos. Internet Protocols over
Wireless Networks [M]. MULTIMEDIA COMMUNICATIONS:
DIRECTIONS AND INNOVATIONS, JERRY D. GIBSON (ED.),
ACADEMIC PRESS, 2000.

[3] J. K. Sundararajan, D. Shah, M. M´edard, M. Mitzenmacher, and J.
Barros, “Network coding meets TCP” in Proceedings of IEEE
INFOCOM, April 2009, pp. 280–288.

[4] J. K. Sundararajan, Szymon Jakubcza, M. M´edard, M. Mitzenmacher,
and J. Barros, “Interfacing network coding with TCP: an
implementation” in Proceedings of IEEE INFOCOM, April 2009, pp.
280–288.

[5] 4 J. K. Sundararajan, D. Shah, and M. M´edard, “ARQ for network
coding,” in Proc. of IEEE International Symposium on Info. Theory
(ISIT), 2008.

[6] 4Fabienne LEFEVRE, Guillaume VIBIER. Understanding TCP’s
behavior over wireless links [C]. Proc. IEEE Symposium on
Computers and Communications, June 2000.

[7] 8R Ahlswede, N Cai, S Y R Li, et al. Network information [J]. IEEE
Trans on Information Theory, 2000, 46(4), pp:1204-1216.

[8] 9R K Ahuja, T L Magnanti, J B Orilin. Network Flows: Theory,
Algorithms, and Applications [M]. Englewood Cliffs, NJ: Prentice
Hall, 1993.

[9] 10Ho T, Karger D, Medard M, et al. The benefits of coding over
routing in a randomized setting [C]. Yokohama, Japan: IEEE
International Symposium on Information Theory, 2003, pp: 442.

[10] 14Gkantsidis C, Rodriguez P R. Network coding for large scale
content distribution [Z]. Microsoft Research, 2004.

[11] W. Richard Stevens. TCP/IP Illustrated Volume 1:The protocol. 2000.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0680

