
An Implementation of Simulation-Based Environment
for Bus Fault Injection Techniques

Biaobiao Shi, Xiaopeng Gao
School of Computer Science and Engineering

Beihang University
Beijing, China

{shibiaobiao, gaoxiaopeng}@les.buaa.edu.cn

Abstract—Reliability is the most important feature in this more
and more complex computer system era. Fault injection is
dependability validation technique to evaluating the system.
Hardware and Software implementations of fault injection
have a long history and are much more mature than simulated
fault injection. In this paper, we compare the differences
between these three types of fault injections at first. Then, we
identify and understand the types of fault. We design a low-
cost, simulation-based fault injection system and design
experiments to verify the correctness.

Keywords-simulation fault injection; reliability;

I. INTRODUCTION

Reliability, the ability of a system or component to
perform its required functions under stated conditions for a
specified period of time[1], is the key feature for a series of
success on system engineering. Built-In Test(BIT)
technology is one of the most important mechanisms that
permit a machine to test itself and Fault injection is one of
the core technologies in BIT.

Fault injection technology generates the appropriate fault
test cases by actual scene, selects the suitable fault injection
tests to proceed BITs and finishes the entire integrity tests.
To do prototype-based fault injection, hardware level and
software level are traditional methods[2]. software fault
injection mainly based on modification of the program being
run by the system under study, so it can emulate software
defects as well; while hardware fault injection methods
generally use direct contact with circuit pins, intercept and
alter the electrical signals at the pins, or inject faults by
creating heavy-ion radiation, which is known as injection
without contact. However, the disadvantages on both of them
list below:

Firstly, the real target physical platforms are needed and
they are not convenient enough to have tests. Secondly, the
computer systems with highly-integrated, multichip hybrid,
tightly encapsulated circuits limit the accessible of physical
fault injection. Thirdly, the physical fault injection can not be
used, judged by availability and Mean Time Between
Failures(MTBF) in design process.

Luckily, simulated method on fault injection is proposed
by [3]. Simulation method has the advantages of relatively
uninhibited access to a modeled system’s internal nodes. The
ability to precisely control and monitor injected faults,
coupled with low-cost computer automation, and the

potential for earlier application make simulated injection an
attractive alternative to physical injection.

Table 1 compares these methods mentioned above. It’s
obviously that simulation fault inject is a remarkable method
for fault injection.

TABLE I. MERIT AND DEMERIT OF DIFFERENT INJECTION METHOD

 Simulation
Injection

Software
Injection

Hardware
Injection

Available Time
During the

process of System
Design

After System
Design
finished

After System
Design finished

Inject level From High
level to Low level

High level
available

Low level
available

Implementation
Cost High Low High

Integrity Yes Yes Probably No
Real time Low Low High

Fault Coverage
Rate Low A bit low High

The researches on simulation fault injection based on Bus
device are not popular for the limitation on the details
implementation of target platform, inaccurate sequential
control and slow runtime environment.

In this paper, we design a method on simulated fault
injection to VME bus. VME bus[4] is a universal
asynchronous bus, it defines a system based which
computing components can transfer data access, store data,
and connect peripheral devices, in a closely coupled
hardware architecture. With a feature of high speed and high
reliability, VME bus widely used in military field and
aerospace field.

 We analyze the three fault type and give expression on
fault model. A simulated fault inject system on VME is
designed and the experiments on verifying the correctness is
exhibited at the last of the paper.

The structure of this article is as follows. After
introducing the related work in section 2, we give fault
expression in section 3. Then, a global design and details
design of our simulated fault injection system are introduced
in section 4. We have experiments on verifying correctness
in section 5.

II. RELATED WORK

There are some studies on simulation fault injection.
FAUmachine[5] [6] which is capable of injecting faults into
emulated PC hardware. FAUmachine enhances the concept
of a virtual machine to simulate complex systems with both

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0711

capabilities of fault-injection and a framework to conduct
large experiments in an automatic manner.

Saboteur [7] is a specific module of Simics. Not only
fault injection can inject in several locations, but also faults
can target a specific processor register, the data bus during a
memory or I/O (Input/Output) operation, or the address bus
during a memory operation.

These two studies can only inject in logic level of
simulator and are they all limited by the encapsulation of
their simulator’s infrastructure, since they did not amend the
functional models in the simulator. This problem is
particularly serious for the bus injection, for the bus
architecture is always simplified a lot in simulators for ease
of use, hence reduce the feasibility of fault injection to
multiple levels of detail model.

III. FAULT EXPRESSION

In this section, we analyze types of the bus fault model
based on simulation.

After analyzing the reason of fault, we find out that the
descriptions of Bus-Level Fault can be represented below:

• Fault Component: Bus;
• Fault Locations: Data-Bus, Address-Bus and Control

Bus;
• Fault Types: Data Substitution, Bit Error and

Control Fault
• Fault Arguments: Different Fault types induce

different arguments. Such as fault address, fault
occurrences times and so on.

• Trigger Events: Under the Trigger Injection situation,
the events which cause the injection activity.

• Fault Timeliness: Permanent Fault, Transient Fault
and Intermittent Fault.

The trigger events can be listed:
• At the beginning of working loads start.
• Read/Write period of Bus.
• Specified Signal, such as interruption requires.
• Access of special address.
• Specified events, such as the specified address

appears n times at Read period.
These fault features can be represents into a tuple. Let M

represents a fault type which show as:
M = {component, target, model, params, trigger, time}

IV. THE FRAMEWORK OF SIMULATION FAULT INJECTION

We introduce the framework of Simulation-based fault
injection in this section, including global design and details.

A. Global Design

Fig. 1 is the global design of our simulation-based fault
injection. The bus Fault Injection framework, it consists of
VME_HOST failure module (Saboteur), Fault management
module (Fault Manage), and a single Fault Injection Console
(Injection Console). Injection Console use a piece of Shared
memory to store the fault instruction; Fault Manage,
monitor and read the data of the same region, and load the
Fault injection instruction to the relevant the module on
which the fault happens. The VME_HOST bus transmission,

bus interrupt and bus arbitration module, are all equipped
with the corresponding failure module, in accordance with
the circumstances, it active the related fault according to the
fault injection instruction to complete fault injection process.

B. Details of Design

1) Data Transfer: first of all, the master activates the
attached request unit to issue a Bus request. When it gets
Bus cycle successfully, it starts a DTB cycle (Data Transfer
Bus cycle) and sends the corresponding Data request. VME
Bus support 64 address, 32 bits of Data Bus Data
transmission. As shown in figure 4.1 shows, when master
request unit get the access of the bus successfully, it will
write data-read/write instructions to output pipe.

2) Data Arbitration: VME bus system complete bus
arbitration process by the interaction between the circuit
boards request unit and the system board bus arbitration
device. VME bus support three types of request unit, it is
respectively: Release-When-Done (RWD), Release-On-
Request (ROR), FAIR. RWD type request unit, is the most
basic bus request unit, it will release the control of the bus
when Master complete a bus transmission (directly write:
unless some other requester on the bus drives one of the bus
request lines low); ROR requesters reduce the number of
arbitrations initiated by a master that is generating a large
percentage of the bus traffic. In systems with more than four
masters or interrupt handlers, fairness can be provided by
FAIR requesters. After it has been granted the bus, the
FAIR requester refrains from requesting the bus again as
long as there are any active bus requests pending on its own
request level. And three types of arbitration algorithm are
supported: Prioritized(PRI), Round-robin-select(RRS) and
Single-level(SGL).

Figure 1. Framework of our Simulation-based fault injection system

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0712

3) Interrupt Handling Process: Interrupt request is
proposed by the IRQ1* - IRQ7* ,when the interrupt handler
monitor the interrupt request, it first get system bus, and
then send interrupt response signal IACK *, start interrupt
response signal of the Daisy chain, and send the interrupt
number to the bus address line (A0 to A3), interrupt module
get the IACKIN * (effective), check A01 - A03 D0, D1 to
find whether the number is the same with its own interrupt
number . If it is the same, interrupt module will send its
interrupt vector/STATUS code (STATUS/ID) on the data
line, and at the same time, drive DTACK *. When interrupt
handler detect DTACK * is effective, it will read interrupt
vector/STATUS code (STATUS/ID), and then execute
interrupt handler. In the realization of this paper,
VME_HOST and request unit, interrupt handler.

V. EXPERIMENTS

In this section, we verify the simulation correction of data
transfer in sub-bus, bus arbitration and bus interruption.

A. Experiments system

As Fig. X. shows, SLOT0 is the VME_HOST system
board which employs Prioritized(PRI) as arbitral method. In
order to exhibit arbitral algorithm, we set two seconds pause
between arbitral activities which enlarges the bus occupation
period. One second pause between the bus transactions in
SLOT1, SLOT2 and SLOT3 three simulated boards with the
master module is set to simulate the activity of bus
intermittent transfer. The priorities irqhandler in SLOT2
monitors are 4, 3, 2, 1. It monitors the interrupt module with
PRI 3 in SLOT1 and module with PRI 4 in SLOT2. The
priorities irqhandler in SLOT3 monitors are 7, 6 5. It monitor
the interrupt module with PRI 7 in SLOT3.

TABLE II. TABLE TYPE STYLES

 mast
er

reques
ter

interrup
ter

Irqhand
ler

slave

SLO
T 1  ROR，

PRI:1
PRI:3 

A64(0x0000,0001,0000
,0000~

0x0000,0001,000
0,FFFF)

SLO
T 2  FAIR,

PRI:2 PRI:4
PRI of

Irq:4,3,2
,1

A32(0x9002,0000~0x9
002,ffff)

SLO
T 3  RWD，

PRI:2
PRI:7 PRI of

Irq:7,6,5
A32(0x9003,0000~0x9

003,ffff)

The details bus activity of simulation boards is:
• Firstly, the programs on VME_HOST run. VME bus

system initializes. After one second, the simulation
board SLOT1, SLOT2 and SLOT3 are online.

• SLOT1: writes 32 bits data 0x1111,1111 at the VME
bus address 0x9002,0000~0x9002,0003; Then,
pauses one second; After that, reads the data from

the address 0x9002,0000~ 0x9002,0003; At the time
of 14 seconds, sends Bus irq request with PRI 3.

• SLOT2: begin the BLT write transaction with start
address 0x9003,0000 on VME bus address; Then,
pauses one second; After that, begin the BLT read
transaction with start address 0x9003,0000 on VME
bus address; At the time of 14 seconds, sends Bus irq
request with PRI 4.

• SLOT3: writes 32 bits data 0x3333,3333 at the VME
bus address
0x0000,0001,0000,0000~0x0000,0001,0000,0003;
Then, pauses one second; After that, reads the data
from the address
0x0000,0001,0000,0000~0x0000,0001,0000,0003;
At the time of 14 seconds, sends Bus irq request with
PRI 7.

B. Experiments results

1) VME Bus Function Test: These log messages in
Figure 3 shows the whole process when the VME_HOST
deals with all the transactions in the VME bus. During the
arbitration procedure，all the three SLOTs call request, for
they are at same level of request priority, so the daisy chain
arbitration algorithm in the VME_HOST responds the
request in the closest SLOT, i.e., SLOT1. Bus arbitrated
twice and transferred twice; then SLOT2 got the bus, for
requester in SLOT2 is a FAIR type, after one transaction, the
bus is granted to SLOT3, and SLOT2 have not get the bus
until SLOT3 transfer all its transaction; the feature of ROR
requester result in the continuous twice transactions without
give up and reapply bus, for there is no other requester apply
for bus. During the interruption procedure, the irqhandler in
SLOT3 respond the priority 7 interrupter request, then the
irqhandler in SLOT2 respond priority 4 and 3 in SLOT2 and
SLOT1, this sequence coincide their priority order. The
whole process verify the data transfer function , arbitration,
interruption handling algorithm all work properly in VME
bus standard.

Figure 2. The Deployment for Bus Function Verification

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0713

2) Fault Injection Test: We design this test to check the
fault injection function in our system. We start the
VME_HOST first as usual, then after one second,we set up
a board, which deployed with a RWD type request in PRI 2,
a interrupter in PRI 7, a irqhandler monitoring PRI 7,6,5. It
firstly write data(0x11111111) to address
(0x90001100),then it reads from address(0x90002200),after
that, it calls for a interrupt.

Figure 4 shows the log messages which are run the
injection console, inject three typical faults, load from
configure file. The configure file shows below:

{bus, data bus, data substitution, (0xAABBCCDD) ,
execute once,(start-end)}

{bus, address bus, bit error, (stuck at 0,0xFFFF00FF),
active when injected, (start-end)}

{bus, control bus, bit error, (stuck at 1, IACK*) , active
when injected, (10s-end)}

In Figure 4, we can find that the injection console injects
all the fault instructions by sequence. Then during the first
write transaction, the write instruction that SLOT1 write
0x11111111 to (0x90001100) was injected with two fault,
data was substituted to 0xAABBCCDD, and the address
turned into (0x90000000) by stuck-at 0 error, as we see in
the VME_HOST log message. During the second transaction
when SLOT1 read from(0x90002200), the address was
changed to (0x90000000), so it got 0xAABBCCDD, as what
showed in SLOT1 log message. The first two fault injection
turn out to be successful. Finally when SLOT1 call for a
interrupt request, it was not responded for the stuck at 1 on
IACK* shut down the interrupt handling process, this
consequence verified the success of the third fault injection.
Hence we got the verification results of fault injection
function of our system.

VI. CONCLUSION

Fault injection has become a valuable asset for evaluating
computer system dependability. It has been wildly-used by
hardware and software injection. Simulation method has the
advantages of relatively uninhibited access to a modeled
system’s internal nodes. The ability to precisely control and
monitor injected faults, coupled with low-cost computer
automation, and the potential for earlier application make
simulated injection an attractive alternative to physical
injection.

In this paper, we compare the differences between these
three types of fault injections first. Then, identify and
understand the types of fault. We design a low-cost,
simulation-based fault injection system and verify the
correctness of this VME simulated fault injection.

REFERENCES
[1] Institute of Electrical and Electronics Engineers (1990) IEEE

Standard Computer Dictionary: A Compilation of IEEE Standard
Computer Glossaries. New York, NY ISBN 1-55937-079-3

[2] Fault Injection techniques and tools

[3] Mei-chen Hsueh, Timothy K. Tsai, Ravishankar K. Iyer. Fault
Injection Techniques and Tools.IEEE Computer - COMPUTER , vol.
30, no. 4, pp. 75-82, 1997

[4] American National Standard for VME64

[5] S. Potyra, V. Sieh, and M. Dal Cin. 2007. Evaluating fault-tolerant
system designs using FAUmachine. In Proceedings of the 2007
workshop on Engineering fault tolerant systems (EFTS '07). ACM,
New York, NY, USA, , Article 9 .

[6] FAUmachine Team. FAUmachine. URL:
http://www.FAUmachine.org/, 2003–2007.

[7] Yangyang Yu, B. Bastien, B. W. Johnson.2005.A state of research
review on fault injection techniques and a case study.Reliability and
Maintainability Annual Symposium - RAMS , pp. 386-392, 2005

Figure 3. Log messages in VME_HOST

Figure 4. Log messages in fault injection test

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0714

