
Keyword Aggregate Query Based on Query Template

Bin Zhu, Fang Yuan*, Yu Wang
College of Mathematics & Computer Science

Hebei University
Baoding, China

E-mail: bbylshuai@126.com, yuanfang@hbu.edu.cn(corresponding author)

Abstract—For keywords query, we propose a keyword
aggregate query method based on query template. During the
keywords processing, symbol table is used to locate the position
of the keywords in the database to get a series of query items.
In the query template generating stage, we design a heuristic
query template generation algorithm. We use the improved
scoring rules to rate the query templates, and select the
optimal query template. The experimental results have shown
that the aggregate query method is effective.

Keywords- aggregate query; query template; query item;
database

I. INTRODUCTION

Along with the extensive application of database
technology, a large amount of information is stored in the
database. In order to retrieve the required information from
database, the users must not only master complex grammar
specification, but also know the mode information of
database. However, it is difficult for the general users who
have no background of database knowledge. The advantage
of information retrieval technology is that it is simple and
convenient, the information can be obtained just by
keywords. Information retrieval techniques are applied to the
query in the database, we can access database through
keyword query, just as using a search engine to retrieve the
information, which make it intuitive and easy-to-use for
users to access databases.

Keyword query which is implemented in database can
simplify the query process, reduce the difficulty and
complexity, and furthermore, it is based on the entire
contents of the database, without the restrictions of
relationships and properties the generated result is not just
confined to a single attribute, a tuple or a single table, we
need to connect the structure that contains different
keywords information in the user query, maybe it is a tuple
connected by multiple tables, expanding the coverage of the
query. In this background, the research about database
queries based on the keywords has become one of the hot
issues, which attracted scholars’ attention in different areas,
such as information retrieval, Internet and database.

In this paper, according to the keywords query in the
database, we proposed a of query template-based
aggregation query method. When processing the user-
specified keywords, the symbol table [1] is used to locate the
position of the keywords in a relational database, forming a
query term. When generating query templates, we design a

heuristic query template generation algorithm. In the query
result generating, we exploit the improved scoring rules to
rate the generated query templates, and then, select the
optimal query template to generate results. Finally, the
experimental results show that the aggregate query method is
effective.

II. RELATED WORK

In recent years, the most scholars conduct their own
research on database query based on keywords. Aiming at
relational database, [1] has implemented search engine
DBXplorer based on keywords. For a given set of query
keywords, DBXplorer return all rows containing all
keywords in the database, these rows are from a single table
or multiple tables joining. Reference [2] put forward the idea
of sorting the search results, then, achieved a framework for
keyword query and proposed a heuristic algorithm for the
incremental traversal of query results, and implemented the
BANKS system that supported relevance ranking and result
presentation. Reference [3] made a further study of the
architecture and algorithm optimization on the basis of the [1,
2], and put forward the DISCOVER system, it can found all
candidate networks by utilizing the database schema without
reproducibility. Then, [4] applied the sort strategies in the
field of Information Retrieval to the database search, and
proposed IR-Style sorting strategies. Reference [5] expanded
the database search language, the SEEKER systems based on
three kinds of keywords not only can support the search of
the property value, but also can search the metadata and
digital properties, and improved the correlation score
mechanism, then returned the top-k results to the user.
Reference [6] proposed adding phrase recognition into the
query algorithm, and increasing the weight of important
phrase in the user queries, which can makes them be in the
forefront of the result, satisfying the user requirements.
Reference [7] proposed a new idea called combination query
to answer keyword query by returning tuple combinations.
Reference [8] aggregated the tuple of the results which
obtained by the previous keyword query technology to
achieve the purpose of aggregate query.

The above literatures focused on finding a set of tuples
that best match keywords, that is, a tuple from a table or
connecting tuple from multiple tables. However, up to now,
the vast majority of research can only support simple
keyword query, without supporting more complex
aggregation query. In order to obtain the results of aggregate
query, the user still need to learn the SQL statement and the

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0715

knowledge of database schema, to construct an appropriate
SQL aggregate query statement. Although the keyword
search which supports the aggregate query has superior
practicability, but the corresponding achievements are less.
Reference [7] proposed a new idea called keyword query
based on tuple combination, it can be considered as special
aggregate query. It was overall tuples of the entire table,
rather than the form of a single tuple, but it was not a real
sense of the aggregate query. Reference [8] aggregated the
tuple of the results which obtained by the previous keyword
query technology, but it can not specify the aggregate query
by the user.

Although using the single tuple to answer the query is
very useful, sometimes we need to use aggregate query.
Therefore, in order to better satisfy the user requirements, we
should be able to support aggregate keyword query. But
sometimes, returning a tuple of a table, or connecting tuples
from multiple tables, or the existing aggregation keywords
query technology, can’t solve this problem, the users might
be interested in aggregate keyword query of their input.

In this paper, aiming at the existence of the above
problems, we proposed a new method called keyword
aggregate query based on query template. During the
processing of keywords, we use the symbol table [1] to
locate keywords, and form the query item which can express
keywords. When generating query templates, we design a
heuristic query template generation algorithm, for each query
term, form a query template; we use the improved scoring
rules to rate the query template which is generated by query
item, and select the optimal query template to generate
results.

III. KEYWORD AGGREGATE QUERY

In this paper, keyword aggregate query has been divided
into three stages for processing. The first stage is keywords
preprocessing, the keywords is located in the database during
this stage, generating the query items. The second stage is
generating the templates, by which we can get the query
templates. The third stage is rating the results for the query
template.

A. Keywords Processing

Keywords Aggregate query is consists of a set of
keywords like k1 ,k2 ,…, ki ,… ,kn , denote it by Q (k1 k2 …
ki … kn), and existing one keyword ki as aggregate
keyword(count, min, max, etc, called aggregate function
name).

It is necessary to perform the corresponding
preprocessing for the user inputting aggregate keywords,
recognizing different kinds of keywords, and representing
them effectively. Learning from the classified processing for
the query keywords in [5], we define the query item, and
represent the query keywords which user input by query item.

Definition 1: (Query Item QI) The specified relational
database D include a series of tables such as
T1 ,T2 ,… ,Ti ,… , Tn., and there are a set of columns called
C(ti) for Ti. A query item is a triples, represented by QI= (A,
a, F). The definitions for these words “A”, “a”, “F” are as
follows:

① (){ }j
iA , valuea= , j

ia

is the j-th column of the i-th

table, or called “(table name).(column name)”, and “value” is
the value of j

ia .

② a ∈A, means aggregating on “a”.
③ F is a aggregation function.
It is inevitable that there might be some meaningless

query items, learning from the idea of [7], we propose a new
definition called Common Query Item.

Definition 2: (Common Query Item) If there is a query
item among following situations, we will call this query item
as common query item.

①There are two columns in A called ia , ja , which refer
to the same attribute.

②According to the function dependency relationship, if
there is a relationship like b ∈ A, b ≠ a, then b → a.

③ There is no aggregate function F in query item.
If the query item doesn’t satisfy any one of the above

situations, then we call this query item as non-common
query item, or important query item.

It is necessary to analyze the query keywords committed
by user. And then recognize all kinds of keywords and store
them. It needs to recognize the effective aggregate keywords
meanwhile analyzing the query keyword. The keywords
which have been recognized should be matched with the
mode of database (including table name, column name)
respectively.

In this paper, we adopt the approximate string matching
algorithm [9] to define the matching degree between
keywords and elements of query item. Every keyword has a
matching degree obtained by the approximate string
matching algorithm. If the matching degree between the
mode element and the keywords is higher than the given
threshold, then it can be regarded as a potential match. After
using the matching algorithm, each keyword can generate a
series of potential matches and form a matching table. Then
it will produce a series of query items through cross product
of each keyword matching table. It is inevitable that there
might be some meaningless query items, so it is necessary to
identify the meaningless query item by using the common
query definition and functional dependences. Common query
item should be eliminated before forming SQL query.

For example, consider that the keyword of aggregate
query is “Bill num paper”. It is trying to calculate how many
total papers have been published for Bill. This keyword can
generate many query items and one of probable query item is
as follows:

 ({Author.name = [Bill], Paper.paperid}, Paper.paperid,
count). Certainly, there are some other probable non-
common query items.

B. Query Template

Query Structure is necessary for SQL query, because it
specifies the entities involved in the query and the
connection type between them. From the perspective of the
SQL grammar, query structure is included in the relational
entities used in FROM clause and WHERE clause. The
existing research on data query has put forward a lot of query

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0716

structure simulation methods. The relatively familiar query
structures used in the relational database query methods are
join tree of tuples [1], joining networks of tuples [3],
Candidate Network [4, 10] etc.

However, aggregation has not been considered in the
existing query structure. From the perspective of SQL, the
aggregation query aggregates on the relational attributes, but
the current query structure couldn’t express this point
accurately. Thereby, it is necessary to redefine a query
structure which is suitable for aggregate query.

Definition 3: (Schema Graph) [1,3,4] Assume that the
database called D has n relations denoted by R1, R2, …, Rn,
and each relation Ri has mi attributes represented
by 1 2, ,

i

i i i
ma a a… . The database schema graph (G) is a directed

graph, which reflects the primary-foreign key relationships in
the database schema. The relation Ri has corresponding node
in G. If there are some primary-foreign key relationships
between attributes

1 2b{ , , }
k

i i i
b ba a a… and attributes

1 2b{ , , }
k

j j j
b ba a a… , then there will be a corresponding edge

between node Ri and Rj in schema graph G, we can describe
it as Ri →Rj.

The relations in the database are represented as nodes in
schema graph. The relationship between primary key and
foreign key are represented by the directed edge, which starts
from the primary key and ends with the foreign key.
DBXplorer [1], DISCOVER [3], IR-Style [4] all adopt this
method. Fig. 1 is the DBLP [11] database schema graph.

Figure 1. The DBLP database schema graph.

Combine with the idea of query structure in [1,3,4,10],
we propose Query Template to simulate the query structure
according to the characteristics of aggregation query and
schema graph. Consequently, we create query template
according to the database schema graph G and non-common
query items.

Definition 4: (Query Template) Query Template is the
extension for the connected subgraph GT (VT, ET) of schema
graph G, where VT signifies the node set, ET denotes edge
set. The definition of VT and ET are as follows:

Node set VT: It includes entity nodes (relation tables) or
attribute nodes (attributes of the entities).

Edge set ET: It includes the undirected edges between
entity nodes and attributes node or the directed edges among
the entities with primary-foreign key relationships.

If the template includes only one entity node, we call it
atom template.

A query template can be considered as a join expression
used to generate potential query results. Learning from the
require for query structure in [3,12], an efficient query
template must satisfy the following properties:

Aggregation: There must be a node labeled as aggregate
node, meanwhile existing in the query items.

Minimality: Any node can’t be removed from the query
template, if any node is removed, the remaining nodes
couldn’t be forming a query template with integrity.

Integrity: The node which expressed by “A” in query
item appears at least one time in query template.

Uniqueness: The exactly same query template QT is
forbidden.

Controllability: The number of nodes should not exceed
the default value MaxQTSize which is the maximum
permissible size of query template. (Setting template’s
maximum is mainly for large and complex database)

For instance, Fig. 2 provides a query template, and
according to the corresponding query template, it can search
the total number of a certain thesis which published in a
certain time. The query template has three entities which
include Paper, Author, Write and the used attributes. We can
see that the join between entity nodes is based on the
primary-foreign key relationships. The edge starts from the
primary key node and ends with the foreign key node.
However, the join between entity nodes and attribute nodes
are denoted by undirected edges.

Figure 2. An example of query template.

Learning from the heuristic thoughts, we put forward a
heuristic query template generation algorithm (CreateQT
algorithm). It analyzes the query items and then provides the
corresponding query template.

The basic idea of the CreateQT algorithm is: The initial
state of the algorithm is a temporary solution “temp” which
only includes an aggregate node. Then search a node in
query items which has the shortest distance between “temp”
in the schema graph. Next, add the searched node and the
path between the node and “temp” to the temporary solution.
The algorithm calculates the distance between the nodes in
query items and “temp” repeatedly, and continue to add the
next shortest node and the corresponding path to the
temporary solution. When all the nodes of query item are
covered, the algorithm will be terminated. However, if the
algorithm cannot be able to be backtracking, and does not
find the next solution, the algorithm will be terminated and
reports an error.

══════════════════════
Algorithm 1: Query Template Generation Algorithm
(CreateQT Algorithm)

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0717

Input: aggregate node, nodes in query item, current query
template (temporary solution, Initialized as a node
which only includes a aggregate node), schema
graph

Output: current query template
Begin
1. if some other nodes in query items are NULL
2. return current query template

/*Initialization*/
3. bool Find = FALSE;
4. temp = current query template (only including

aggregate node)
5. while(TRUE)

/* repeatedly positing the nodes which has the
shortest distance from the current query template */

6. for each node N in the current template{
7. for each edge E in the current schema graph{
8. if the edge E is included with N, and is the

shortest edge. And that, the other end node of E is
not in current template {

9. add edge E and the other node E’ into current
template;

10. Find=TRUE;}}
11. if schema graph does not include the node, add a

undirected edge connecting the node and related
node}

12. if Find = FALSE return NULL；
/*It does not find the next add solution */

13. search the nodes of query item in current template
matching nodes

14. if the matching nodes is null then continue;
15. Add = FALSE;
16. for each node in the matching nodes{
17. if it fulfill several conditions of the query template{
18. Add=TRUE;
19. add the nodes and the related path into the current

template；
20. remove the nodes and the path in the query item;}}
21. if (Add = TRUE){
22. CreateQT(aggregate node, nodes in query item,

current query template, schema graph) ;}
23. else continue;
24. end while
End
══════════════════════
The query item which is generated in the preprocessing

stage of keywords can form corresponding query template. A
query template will be uniquely corresponds to a structured
query.

C. Generate the Query Results

The work before delivering final results to the users is to
sort the query template, because there are many possible
query templates meeting the keywords matching conditions.
However, users are usually only interested in the most
relevant results.

The score of one query template is depending on the
nodes weight and edge weight. At first, the scoring function
assigns one score to each query template to measure the

matching degree between query results and query keywords.
The result with the highest score will be returned firstly. The
ranking function is based on the scoring function. It ranges
the query template according to the scores.

For the node weight, we learn the method which is
proposed in SEEKER [5] and improve the method to
calculate the similarity between query keywords and query
template. In the method proposed by SEEKER, the nodes in
every query template should be matched with every keyword.
In this paper, each node in query template is corresponding
with each query keyword. The number of the keywords in
query results is not identical. Obviously, the more contained
keywords, the higher the score. The improved scoring
formula is as follows:

' ()

i
1

1
(,) (,)

()

sizeof QT
a

i
i

m
Score QT Q Score T k

sizeof QT m =

= ((. (1)

Where, QT is a query template which is consists of query
results. “sizeof(QT)” is the number of nodes which QT
contains. Ti is the node in QT; Q is one of the keywords
query, m is the number of keywords in Q, and ki ∈Q; m’ is
the number of the nodes in QT; “a” is constant to ensure that
the score of query results which contained more keywords is
higher than the ones with less keywords; i(,)iScore T k is a
matching degree for a given keyword with the corresponding
node. The value of i(,)iScore T k is standardized in the [0, 1]
range, where 0 means not match, 1 means exact match.

For edge weight, in the query template, the adjacent
relationship of a single node with the surrounding other
nodes reflects that this node’s impact on the surrounding
nodes and the importance of the its content. The adjacent
relation is embodied by the in-degree of nodes, if the in-
degree of one node is greater, it indicates that the primary
key of this node is the foreign keys of more other nodes.
Consequently, the more the node should be included in the
query template formed by query keywords, that is, the
adjacent edges with this node should be given priority to be
accessed during query time.

In order to reflect the importance of node in-degree in
edge weight calculation, the following formula [13] is used
to calculate the edge weight.

 1 1 2 21 1 2 2

1 1 2 2

0ln()
(,)=

02*min weight(k,u)e

w ww w
w u v

w w

λ λλ λ
λ λ

+ ≠+
 + =

，

，
. (2)

Where, =ln((v))inλ 1+N reflect the impact of the node v’s

in-degree on edge weight. ()in vN is the in-degree of the node

v. 1w , 2w are the similarity between the nodes connected by

the edge e. min weight(k,u) is the minimum similarity of all
nodes in the query templates. From (2) we can see that the
greater 1 1 2 2w wλ λ+ , the greater the weight of edge e, and
then the edge has a higher access priority.

We use (1) and (2) to calculate the score of query
template, and sort them, the query template with the
maximum weight score will be selected as the optimal query
template corresponding to the query item.

We use the CreateQT Algorithm to find query templates,
rate and sort them. Next, convert the query template in which

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0718

the users are interested into the corresponding structured
query statement. Finally, submit these query statement to
DBMS to run and return the query results.

The implementation process of the query results
generation is described in Algorithm2.

══════════════════════
Algorithm 2: Results Generation Algorithm (TranslateQT
algorithm)
Input: query item, query template
Output: Structured Query Statement (SQL)
Begin
1. The elements in query itemSELECT clause;
2. The entity nodes in query templateFROM clause;
3. The edge between the entity nodes in query

templateWHERE clause;
4. The element value in query itemWHERE clause;
5. Element in query template(except aggregate nodes)

GROUP BY clause;
6. return SQL statement.
End
══════════════════════

IV. EXPERIMENTS

A. Experiment Setup

The experiments are running on a PC with an Intel
Pentium 4, 3.06 GHz CPU and 2G RAM with 160GB disk,
running a Windows XP operating system, and all the
algorithms use VC + + language to connect database SQL
Server 2000.

In order to evaluate the performance of the aggregate
query method, the experiment is performed on DBLP [11]
dataset. The DBLP dataset source is XML file which is
provided by DBLP website. We use these XML data to
construct the DBLP schema graph as shown in Figure 1, load
the data mappings into relational database, and decompose
them into four relationships: Author (Recording the authors
information), Paper (Recording the paper information, such
as published in which year and in which International
Conference), Write (Recording the information author
writing paper). Cite (Recording the referenced information
about one paper citing another paper). The dataset is stored
on SQL Servers.

B. Query Effect

In this paper, we use Precision and Recall to measure
query effect. In the experiment, we use keyword query to
finish the same task as SQL query. According to the query
feedback record, we get the query result set matching with
the user query and use it as a reference set. And we calculate
the keyword query precision and recall based on the query
result of reference set.

At first, we construct five groups of keywords aggregate
query testing set Qi (i=3, 4, 5, 6, 7, represented as Q3 -
Q7) ,each group has 12 queries, “i” is the number of query
words contained in this group of query, and the query is
about DBLP dataset’ s aggregate query.

TABLE I. EXPERIMENTAL RESULTS OF THIS PAPER

Keywords Query Precision Recall

Q3 81.2% 85.6%

Q4 78.3% 82.9%

Q5 81.5% 80.6%

Q6 74.7% 77.7%

Q7 72.5% 73.6%

Average 77.6% 80.8%

Table Ⅰdescribes five groups of testing set query results
about keywords aggregate query, and provides the Precision
and Recall. As seen from Table Ⅰ, for each Qi, with the
increasing of the keywords number, the number of query
template associated with query in database is usually also
increased the query returning results will become a smaller
fraction of the total matching results. So the Recall will be
reduced with the increase of the query keywords number.

Comparison between method in [8] and our proposed
method is as shown in Table Ⅱ.

TABLE II. COMPARISON OF THE METHODS BETWEEN [8] AND THIS
PAPER

 Average Precision Average Recall

Experimental result in [8] 61.8% 79.8%

Experimental result in the
paper

75.3% 80.5%

As seen from Table Ⅱ, the Recall of the method used in
[8] and in our paper is almost the same, but the Precision of
our proposed method is higher than the one in [8], this
proves the effectiveness of our proposed method. In [8], the
author aggregate the result tuples obtained by previous
keywords query technique to achieve the purpose of
aggregation query. However, it cannot guarantee that the
query results may completely contain all the tuples that meet
the requirements, which will affect the accuracy of the
results and reduce the precision. In this paper, we propose
the concept of query template, and use query template to
improve the precision rate while guaranteeing the recall rate.

Finally, combine the above experimental results, it shows
that the method has good feasibility, and has a good query
performance.

V. CONCLUSIONS

In this paper, in order to solve the aggregate query
problem on database, we propose a new method called
aggregate query over databases based on query template, it
forms query item through the processing of keywords and
generates the most probable template of aggregate keywords
as the query result. We use the improved calculation method
of edge weight and node weight to enhance the query effect.
We verify the effectiveness of the proposed aggregate query
method through a series of experiments on real datasets.

This method is a single aggregation query, and further
research will focus on complex aggregate query.

ACKNOWLEDGMENT

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0719

This work is supported by the National Natural Science
Foundation of China under Grant No. 61170039 and Key
Lab. in Machine Learning and Computational Intelligence of
Hebei Province.

REFERENCES
[1] S. Agrawal, S. Chaudhuri, and G. Das, “DBXpIorer: A system for

keyword-based search over relational databases,” Proc. of the 18th
Int’l Conf J. eds. Data Engineering (ICDE 2002), IEEE Computer
Society Press, 2002, pp. 5-16.

[2] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan,
“Keyword searching and browsing in databases using BANKS,” Proc.
Of the 18th Int’l Conf. on Data Engineering (ICDE 2002), IEEE
Computer Society Press, 2002, pp. 431-440.

[3] V. Hristidis, and Y. Papakonstantinou, “DISCOVER: Keyword
search in relation databases,” Proc.of the 28th Int’l Conf. on Very
Large Data Bases (VLDB 2002), Morgan Kaufmann Publishers, 2002,
pp. 670-681.

[4] V. Hristidis, L. Gravano, and Y. Papakonstantinou, “Efficient IR-
style keyword search over relation databases,” Proc. of the 29th Int’1
Conf. on Very Large Data Bases, Morgan Kaufrnann Publishers,
2003, pp850-861.

[5] J. J. Wen, and S. Wang, “SEEKER: Keyword-based information
retrieval over relation databases,” Journal of Software, 2005, pp.
1270-1281.

[6] P. Li, Q. Zhu, A. J. Ren, W. Hu, and X. Y. Du, “Novel algorithms of
keyword search over relational databases and phrase recognition,”
Computer Science, 2008, pp. 134-138.

[7] Y. Tao, Z. Y. He, and J. Q. Zhang, “Keyword queries over relational
databases based on tuple combination,” Journal of Computer
Research and Development, 2011, pp. 1890-1898.

[8] B. Utharn, P. Krirngkrai, S. Umaporn, “Answer aggregation for
keyword search over relation databases,” Proc of the IEEE Conf on
Visual Analytics Science and Technology, 2010, pp. 477-482.

[9] H. M. Wang, Algorithm Design and Analysis, Beijing: Tsinghua
University Press, 2006, pp. 132-134.

[10] Y. Luo, W. Wang, and X. Lin, “Spark: A keyword search engine on
relational databases,” The 24th International Conference on Data
Engineering, 2008, pp. 1552-1555.

[11] The DBLP Computer Science Bibliograhy [DB/OL], http://dblp.uni-
trier.de/.

[12] J. F. Xi, G. H. Liu, J. C. Li, J. J. Tang, and R. L. Qi, “Top-k oriented
hierarchical keyword-based information query system architecture
over databases,” Journal of Yanshan University, 2004, pp. 67-73.

[13] Y. Zhang, F. S. Jin, G. H. Liu, Y. Yuan, and L. Li, “Minimum steiner
tree based method to keyword search,” Journal of Chinese Computer
Systems, 2010, pp. 119-123.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0720

