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Abstract—Anomaly detection has been a field of intensive 
research over the last years. Along with that several works to 
evaluate anomaly detectors have been proposed. In this paper 
we argue four properties regarding ideal evaluation 
methodologies that cannot be answered by single current 
evaluation technique employed today. We therefore present an 
framework of an evaluation methodology that leverages traces 
from operational networks, simulation and emulation to satisfy 
the four properties. 
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I.  INTRODUCTION 

Network security has always been a hot topic to network 
users and managers. Nowadays new threats or mutations of 
existing ones appear at a very fast rate. It is therefore not 
surprising that there has been an explosion in research on 
network anomaly detection in recent years [1], [2] [3]. With 
the flurry of anomaly detection papers, several works to 
validate and compare the proposed solutions have been 
proposed [1][4]-[7]. The data traces used in those works are 
captured from operational networks, simulations and 
emulations. 

Generally, an ideal evaluation method for network 
anomaly detection requires credibility and fidelity of the data 
traces and the ability of entire control and reproducibility the 
experiments. However, it’s difficult to find a single 
evaluation technique employed today satisfying all those 
ideal conditions. 

A general way to evaluation in the anomaly detection 
domain is using data traces taken from operational networks. 
But it’s difficult to get such data traces since network traffic 
data is very privacy-sensitive, especially when it contains 
payloads or IP addresses. Strict laws have been issued in 
many countries that prohibit the public sharing of network 
data. Moreover, the available datasets are usually not labeled, 
i.e., the instances of malicious or disruptive activity in the 
trace are not known beforehand and need to be added by a 
human expert.  

Simulation has played a vital role in networking research 
over years. It has unmitigated access and control over 
networks to evaluate some aspects of complex ideas. 
However, simulation often simplifies some parts of a real 
environment. The full interaction between all parts is 
difficult to model or simulate as it requires such a detail that 
it is not feasible. Therefore the synthetic data generated 
cannot substitute for their counterparts in real operational 
networks.  

Emulation goes half way between simulation and real 
world testing, by modeling some parts and running live other 
parts. It provides more fidelity than simulation. But 
emulators have in common that they try to address the 
problems of scaling, management and reproducibility. 
Moreover emulation cannot always be a substitute for real 
world experiments. 

We therefore present a framework of evaluation 
methodologies that leverages traces from operational 
networks, simulation and emulation to satisfy the four 
properties of ideal evaluation methods.  

The rest of this paper is organized as follows. Section II 
we briefly present the most important approaches to evaluate 
anomaly detectors that have been published so far; In Section 
III we enumerate four requirements of a thorough evaluation 
of anomaly detectors that are not always met by currently 
employed evaluation methodologies. In Section IV we 
propose the framework of an ideal evaluation method. We 
conclude in Section V. 

II. RELATED WORKS 

Recent work has proposed using ways such as Principal 
Component Analysis (PCA) and subspace-based analysis [1], 
etc. over global traffic matrix statistics to effectively isolate 
network-wide anomalies including worms, DDoS attacks, 
and IP scans. 

Captured datasets are typically very privacy-sensitive. 
Although there is a large body of literature on anomaly 
detection techniques only few authors share their data within 
the community. 

One notable data source is the packet traces from the 
WIDE backbone network [8] that are maintained by the 
MAWI working group. The repository includes a variety of 
anonymized traces from 1999 to 2009 from six different 
measurement points. Abilene [9] and Géant [10] are the 
other two backbone networks that provide researchers with 
anonymized NetFlow traces upon request. Traces from these 
networks have been used for evaluation in [1][11][12]. 

Labels that identify when an anomaly has happened are, 
however, absolutely required for evaluating whether an 
anomaly detection system is accurate or not. Ringberg et al. 
[13] have recognized the problem and proposed a tool called 
webclass that provides functionality to store and compare 
labels that have been assigned by different domain experts to 
a trace. 

A more recent advance in dataset simulation and 
emulation is due to Sommers et al [14]. The authors present 
Harpoon, a tool for generating representative benign packet 
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traffic at the IP flow level. Harpoon generates application-
independent UDP and TCP traffic. 

Mirkovic et al. [15] have developed a tool called AProf 
that extracts the traffic caused by Denial of Service attacks 
from packet traces based on connection heuristics. The 
extracted attack traces are used as benchmarks for 
experimentation in the DETER testbed [16]. 

III. REQUIREMENTS 

In this section we list four properties of an ideal 
evaluation methodology for network wide anomaly detectors. 

A. Credibility 
“Ground truth” in the context of network anomaly 

detection requires a complete list of all anomalies existing in 
a given data set. While the requirement itself might seems 
obvious, it is much less clear how to obtain this ground truth. 
Identifying the true-positive anomalies requires combing 
through vast amounts of data that are sometimes of poor 
quality due to data-reduction techniques such as sampling. 
The challenges of obtaining high-quality data have led to 
many compromises in the evaluation of anomaly detectors, 
which in turn leads to “partial” ground truth. 

In order to quantify the accuracy of a detector it is 
necessary to first identify a set of “true” anomalies that ought 
to be found by the detector. This set must obviously be 
identified by a procedure that is independent of the detector 
being evaluated.  

By far the most common way to accomplish this 
identification is to rely on manual labeling of traces by 
domain experts or automated injection of anomalies into 
traces. In the manual labeling procedure, the human domain 
expert inspects a trace and certifies some events as being 
true-positive anomalies. The detector is then evaluated based 
on its ability to identify this set of events. Anomaly injection 
leverages models of anomalies in order to introduce them 
into traces taken from operational networks. It cannot 
guarantee accurate FPP and FNP measurements due to its 
reliance on existing traces. That is, these existing traces 
presumably came with an unknown number of anomalies. 
Neither automated algorithms nor human domain experts can 
identify all these anomalies with complete confidence. 

B. Fidelity 
Fidelity to “real” networks is important. There are several 

dimensions to fidelity: (1) the number of nodes, (2) realism, 
i.e., reproducing real router and end-system behavior, and (3) 
realistic heterogeneity of hardware and software, and (4) a 
realistic mix of link bandwidths and delays. 

Fidelity has costs for the purchase, maintenance, and 
operation of hardware and software. The hardware-related 
costs of a testbed increase linearly with the number of nodes, 
and faster than linearly when the cost of switches is 
considered since some switch ports have to be used for inter-
switch bandwidth. A central aspect of the experimental 
science on testbeds is to construct idealized abstractions of 
the real Internet with enough fidelity for specific experiments. 

Some experimenters will want to run experiments that 
require more nodes than are available.  It is possible to run 

multiple virtual nodes on each physical node to enable such 
experiments, but virtualization introduces artifacts which 
must be considered when evaluating experimental results. 

C. Experimental Control 
There are important questions about the effectiveness of 

network anomaly detectors that cannot be answered without 
having complete control of the entire evaluation experiment. 
Having complete control requires that one has the power to 
change the location, magnitude, and type of individual 
anomalies as well as for the background traffic.  

For data traces from operational networks, manual 
labeling would be unable to provide such control due to the 
fixed nature of the underlying trace. While automated 
anomaly injection into existing traces only provides partial 
control over anomaly itself and not the background traffic. 

Complete control over the evaluation experiment is also 
necessary in order to train and test the detector on clean data. 
That is, an evaluation methodology that leverages existing 
traces should guarantee that all anomalies in those traces 
have been identified. Only through simulation can one 
ensure that all anomalies in an evaluation trace are known. 

D. Reproducibility 
The ability to reproduce an experiment is a central 

characteristic of the scientific method. A researcher might 
wish to (1) verify published results by evaluating the same 
algorithm on the same data, (2) investigate the robustness of 
a published algorithm by applying it to different data, or (3) 
compare a novel algorithm against the published one by 
using the same data.  

The problem of reproducibility in network anomaly 
detection is particularly dire due to a general lack of public 
data sets. The problem is exacerbated because most detectors 
are evaluated using traces from operational networks, and 
there are numerous valid reasons why such traces cannot be 
shared with the community. A significant fraction of these 
traces come from commercial networks, which means that 
both the data and software is likely proprietary. Even for 
traces from educational networks, there will be privacy 
concerns. Furthermore, there are stringent laws that restrict 
the distribution of certain types of telecommunications data. 
Finally, traces can often be on the order of many terabytes 
and it may be practically infeasible to share them. Traces can 
grow to this size because modern networks carry vast 
amounts of traffic and therefore any algorithm that is 
claimed to be able to operate in an online setting should be 
evaluated on representative traces.  

IV. FRAMEWORK 

The evaluation framework presented is for the anomaly 
detection and classification method ODC [17] that we have 
previously proposed and future works. Due to the virtues and 
shortcomings of each single evaluation method, it’s obvious 
that an anomaly detector will be thought more valuable by 
testing and verifying it through more methods, as shown in 
figure 1, to real networks. The common models of several 
methods can be reused with minor modification. 

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France. 
© the authors 

0730



 
Figure 1.  Framework of evaluation methods for anomaly detectors 

A. Data traces 
Data traces with manual labeling or attack traffic 

injection can be directly used for evaluation of anomaly 
detectors. It’s simple and the first method in our framework 
in which we use four weeks of sampled NetFlow data for the 
period March 1, 2010 to March 28, 2010, collected from all 
access links of two backbone networks: Abilene and Géant.  

Abilene is the Internet2 backbone network, connecting 
over 200 US universities and peering with research networks 
in Europe and Asia. It consists of 9 Points of Presence (PoPs), 
spanning the continental US. We collected sampled IP-level 
traffic flow data from every PoP in Abilene. Sampling is 
periodic, at a rate of 1 out of 100 packets. Abilene 
anonymizes destination and source IP addresses by masking 
out their last 11 bits.  

Géant is the European Research network, and is twice as 
large as Abilene, with 22 PoPs, located in the major 
European capitals. Data from Géant is sampled periodically, 
at a rate of 1 every 1000 packets. The Géant flow records are 
not anonymized.  

Both networks report flow statistics every 5 minutes; this 
allows us to construct traffic timeseries with bins of size 5 
minutes. The prevalence of experimental and academic 
traffic on both networks make them attractive testbeds for 
developing and validating methods for anomaly diagnosis.  

The download flow data were sampled in both backbone 
networks and anonymized in Abilene networks. This could 
lead to potential bias when evaluating anomaly detectors, 
which should be considered and is the reason of using 
successive evaluation methods. 

The data traces should be manual labeled or anomaly 
injected before using for evaluation. Therefore, anomalies in 
the data were identified using available manual labeling 
methods: visual inspection of timeseries and top-n queries 
directly on the flow data. Anomaly injection needs attack 
traffic generation. We use MACE [18] as the malicious 
traffic generator. MACE is a modular attack composition 
framework that consists of three primary components: (i) 
exploit, (ii) obfuscation, and (iii) propagation, as well as a 
number of functions to support interpretation, execution, and 
exception handling of attack profiles.  

B. Simulation 
Due to the controllability, reproducibility and scalability 

of simulation, researchers have found it valuable in 
evaluating anomaly detection systems over the last years 
[19][20]. Currently the available simulators include NS [21], 
OPNET [22], GNS [7], and so on. We use GNS3 as the 
simulation method in the framework. 

GNS3 is a multi-platform, open-source Graphical Net- 
work Simulator. GNS3 allows the emulation of complex 
network topologies by emulating many Cisco IOS router 
platforms, IPS, PIX and ASA firewalls, and JunOS with the 
help of Dynamips and Dynagen. Dynamips is the core 
program behind the emulation process and the Dynagen tool 
runs on top of it to create a user-friendly, text-based 
environment. GNS3 provides the graphical front-end for 
Dynagen, so that users can create the topologies in a 
graphical and user-friendly environment. GNS3 also allows 
the emulation of ATM and Frame Relay switches, enables 
packet capture using Wireshark. 

The topology of the simulation network is created in NS2 
format. Each backbone node was paired with an external 
interface. The external interfaces represent traffic to network 
resources external to the simulation network. NS2 is a TCL 
based scripting language which can use iterative control 
structures. 

MACE can use traffic generation tools as complements 
used to generate legitimate (benign) background traffic. 
Harpoon reproduces network traffic in an application-
oblivious manner [23]. Numerous application-aware traffic 
generators like SURGE produce workloads to stress-test web 
servers [24]. The LTProf tool produces legitimate traffic 
models that describe communication between a set of active 
clients and a network that is the target of a DDoS attack. 

The experiment setup generator receives as input (1) AS- 
level and edge-network topologies from the topology library, 
(2) legitimate and malicious traffic models generated by the 
MACE. It glues these elements together into an ns file 
containing topology specification and a collection of Perl 
scripts, one for each attack from the list and one script for 
legitimate-traffic- only testing. 

C. Emulation 
The emulation network in this framework is like DETER 

[5]. The DETER testbed allows security researchers to 
replicate threats of interest in a secure environment and to 
develop, deploy and evaluate potential solutions. The 
emulation network topology is shown in figure 2, including 
three cluster of experimental PC nodes, with a common 
control plane. There are roughly 50 nodes in total, currently. 
These nodes are interconnected by a “programmable  
backplane” of high-speed Ethernet switches, trunked to  form 
a single logical switch.  Each experimental PC has  four 
experimental interfaces and one control interface to  this 
switch. 
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Figure 2.  Topology of the simulation network 

 
Figure 3.  Distributed monitoring system of the Testbed 

As shown is figure 3, in each cluster there is a monitor 
capable of generating NetFlow about passing traffic (both 
directions of the link are monitored without sampling or 
packet loss) in the form of compressed nfdump files. The 
traffic matrix is generated at analysis server which receives 
compressed nfdump files at 1:00 a.m. each day. Further, 
precomputed time series are provided from the whole 
measurement period. This includes volumes of flows, 
packets and bytes per 5 minutes interval differentiated by a 
protocol (TCP, UDP, ICMP). 

V. CONCLUSION 

This paper addresses several issues related to 
experimenting with current methods and enumerates four 
properties of an ideal evaluation method and proposed a 
general framework for experimenting with network anomaly 
detection methods. To this end, the framework consists of 
various functions and methods used for anomaly detection. 
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