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Abstract—Anomaly detection has been a field of intensive
research over the last years. Along with that several works to
evaluate anomaly detectors have been proposed. In this paper
we argue four properties regarding ideal evaluation
methodologies that cannot be answered by single current
evaluation technique employed today. We therefore present an
framework of an evaluation methodology that lever ages traces
from operational networks, simulation and emulation to satisfy
thefour properties.
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l. INTRODUCTION

Network security has always been a hot topic to network
users and managers. Nowadays new threats or mutations of
existing ones appear at a very fast rate. It is therefore not
surprising that there has been an explosion in research on
network anomaly detection in recent years [1], [2] [3]. With
the flurry of anomaly detection papers, several works to
validate and compare the proposed solutions have been
proposed [1][4]-[7]. The data traces used in those works are
captured from operational networks, simulations and
emulations.

Generaly, an ideal evaluation method for network
anomaly detection requires credibility and fiddlity of the data
traces and the ability of entire control and reproducibility the
experiments. However, it's difficult to find a single
evaluation technique employed today satisfying all those
ideal conditions.

A general way to evaluation in the anomaly detection
domain is using data traces taken from operational networks.
But it's difficult to get such data traces since network traffic
data is very privacy-sensitive, especialy when it contains
payloads or IP addresses. Strict laws have been issued in
many countries that prohibit the public sharing of network
data. Moreover, the available datasets are usually not 1abeled,
i.e., the instances of malicious or disruptive activity in the
trace are not known beforehand and need to be added by a
human expert.

Simulation has played a vital role in networking research
over years. It has unmitigated access and control over
networks to evaluate some aspects of complex idess.
However, simulation often simplifies some parts of a real
environment. The full interaction between &l parts is
difficult to model or simulate as it requires such a detail that
it is not feasible. Therefore the synthetic data generated
cannot substitute for their counterparts in real operational
networks.

Emulation goes half way between smulation and rea
world testing, by modeling some parts and running live other
parts. It provides more fidelity than simulation. But
emulators have in common that they try to address the
problems of scaling, management and reproducibility.
Moreover emulation cannot always be a substitute for real
world experiments.

We therefore present a framework of evaluation
methodologies that leverages traces from operational
networks, simulation and emulation to satisfy the four
properties of ideal evaluation methods.

The rest of this paper is organized as follows. Section 1l
we briefly present the most important approaches to evaluate
anomaly detectors that have been published so far; In Section
Il we enumerate four requirements of a thorough evaluation
of anomaly detectors that are not always met by currently
employed evauation methodologies. In Section IV we
propose the framework of an ideal evaluation method. We
concludein Section V.

Il.  RELATED WORKS

Recent work has proposed using ways such as Principal
Component Analysis (PCA) and subspace-based analysis[1],
etc. over global traffic matrix statistics to effectively isolate
network-wide anomalies including worms, DDoS attacks,
and IP scans.

Captured datasets are typicaly very privacy-sensitive.
Although there is a large body of literature on anomaly
detection techniques only few authors share their data within
the community.

One notable data source is the packet traces from the
WIDE backbone network [8] that are maintained by the
MAWI working group. The repository includes a variety of
anonymized traces from 1999 to 2009 from six different
measurement points. Abilene [9] and Géant [10] are the
other two backbone networks that provide researchers with
anonymized NetFlow traces upon request. Traces from these
networks have been used for evaluation in [1][11][12].

Labels that identify when an anomaly has happened are,
however, absolutely required for evaluating whether an
anomaly detection system is accurate or not. Ringberg et a.
[13] have recognized the problem and proposed atool called
webclass that provides functionality to store and compare
labels that have been assigned by different domain experts to
atrace.

A more recent advance in dataset simulation and
emulation is due to Sommers et al [14]. The authors present
Harpoon, a tool for generating representative benign packet
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traffic at the IP flow level. Harpoon generates application-
independent UDP and TCP traffic.

Mirkovic et a. [15] have developed a tool called AProf
that extracts the traffic caused by Denial of Service attacks
from packet traces based on connection heuristics. The
extracted attack traces are used as benchmarks for
experimentation in the DETER testbed [16].

I1l.  REQUIREMENTS
In this section we list four properties of an ided

evaluation methodology for network wide anomaly detectors.

A. Credibility

“Ground truth” in the context of network anomaly
detection requires a complete list of all anomalies existing in
a given data set. While the requirement itself might seems
obvious, it is much less clear how to obtain this ground truth.
Identifying the true-positive anomalies requires combing
through vast amounts of data that are sometimes of poor
quality due to data-reduction techniques such as sampling.
The chalenges of obtaining high-quality data have led to
many compromises in the evaluation of anomaly detectors,
whichinturn leadsto “partial” ground truth.

In order to quantify the accuracy of a detector it is
necessary to first identify a set of “trug’ anomalies that ought
to be found by the detector. This set must obvioudy be
identified by a procedure that is independent of the detector
being evaluated.

By far the most common way to accomplish this
identification is to rely on manual labeling of traces by
domain experts or automated injection of anomalies into
traces. In the manual labeling procedure, the human domain
expert inspects a trace and certifies some events as being
true-positive anomalies. The detector is then evaluated based
on its ability to identify this set of events. Anomaly injection
leverages models of anomalies in order to introduce them
into traces taken from operationa networks. It cannot
guarantee accurate FPP and FNP measurements due to its
reliance on existing traces. That is, these existing traces
presumably came with an unknown number of anomalies.
Neither automated algorithms nor human domain experts can
identify all these anomalies with complete confidence.

B. Fidelity

Fidelity to “real” networksisimportant. There are severa
dimensions to fiddity: (1) the number of nodes, (2) realism,
i.e., reproducing real router and end-system behavior, and (3)
redistic heterogeneity of hardware and software, and (4) a
realistic mix of link bandwidths and delays.

Fidelity has costs for the purchase, maintenance, and
operation of hardware and software. The hardware-related
costs of atestbed increase linearly with the number of nodes,
and faster than linearly when the cost of switches is
considered since some switch ports have to be used for inter-
switch bandwidth. A central aspect of the experimental
science on testbeds is to construct idealized abstractions of

the real Internet with enough fidelity for specific experiments.

Some experimenters will want to run experiments that
require more nodes than are available. It is possible to run

multiple virtual nodes on each physical node to enable such
experiments, but virtualization introduces artifacts which
must be considered when evaluating experimental results.

C. Experimental Control

There are important questions about the effectiveness of
network anomaly detectors that cannot be answered without
having complete control of the entire evaluation experiment.
Having complete control requires that one has the power to
change the location, magnitude, and type of individual
anomalies as well as for the background traffic.

For data traces from operationa networks, manual
labeling would be unable to provide such control due to the
fixed nature of the underlying trace. While automated
anomaly injection into existing traces only provides partial
control over anomaly itself and not the background traffic.

Complete control over the evaluation experiment is also
necessary in order to train and test the detector on clean data.
That is, an evauation methodology that leverages existing
traces should guarantee that all anomalies in those traces
have been identified. Only through simulation can one
ensure that all anomaliesin an evaluation trace are known.

D. Reproducibility

The ability to reproduce an experiment is a centra
characteristic of the scientific method. A researcher might
wish to (1) verify published results by evauating the same
algorithm on the same data, (2) investigate the robustness of
a published algorithm by applying it to different data, or (3)
compare a novel agorithm against the published one by
using the same data.

The problem of reproducibility in network anomaly
detection is particularly dire due to a genera lack of public
data sets. The problem is exacerbated because most detectors
are evaluated using traces from operational networks, and
there are numerous valid reasons why such traces cannot be
shared with the community. A significant fraction of these
traces come from commercial networks, which means that
both the data and software is likely proprietary. Even for
traces from educational networks, there will be privacy
concerns. Furthermore, there are stringent laws that restrict
the distribution of certain types of telecommunications data.
Finally, traces can often be on the order of many terabytes
and it may be practically infeasible to share them. Traces can
grow to this size because modern networks carry vast
amounts of traffic and therefore any agorithm that is
claimed to be able to operate in an online setting should be
evaluated on representative traces.

IV. FRAMEWORK

The evauation framework presented is for the anomaly
detection and classification method ODC [17] that we have
previously proposed and future works. Due to the virtues and
shortcomings of each single evaluation method, it's obvious
that an anomaly detector will be thought more valuable by
testing and verifying it through more methods, as shown in
figure 1, to real networks. The common models of several
methods can be reused with minor modification.
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Figure1l. Framework of evauation methods for anomaly detectors

A. Datatraces

Data traces with manual labeling or attack traffic
injection can be directly used for evauation of anomaly
detectors. It's simple and the first method in our framework
in which we use four weeks of sampled NetFlow data for the
period March 1, 2010 to March 28, 2010, collected from all
access links of two backbone networks: Abilene and Géant.

Abilene is the Internet2 backbone network, connecting
over 200 US universities and peering with research networks
in Europe and Asia. It consists of 9 Points of Presence (PoPs),
spanning the continental US. We collected sampled 1P-level
traffic flow data from every PoP in Abilene. Sampling is
periodic, a a rate of 1 out of 100 packets. Abilene
anonymizes destination and source |P addresses by masking
out their last 11 bits.

Géant is the European Research network, and is twice as
large as Abilene, with 22 PoPs, located in the mgor
European capitals. Data from Géant is sampled periodically,
at arate of 1 every 1000 packets. The Géant flow records are
not anonymized.

Both networks report flow statistics every 5 minutes; this
allows us to congtruct traffic timeseries with bins of size 5
minutes. The prevalence of experimenta and academic
traffic on both networks make them attractive testbeds for
developing and validating methods for anomaly diagnosis.

The download flow data were sampled in both backbone
networks and anonymized in Abilene networks. This could
lead to potentia bias when evaluating anomaly detectors,
which should be considered and is the reason of using
successive evaluation methods.

The data traces should be manual labeled or anomaly
injected before using for evaluation. Therefore, anomaliesin
the data were identified using available manual labeling
methods: visua inspection of timeseries and top-n queries
directly on the flow data. Anomaly injection needs attack
traffic generation. We use MACE [18] as the malicious
traffic generator. MACE is a modular attack compoasition
framework that consists of three primary components. (i)
explait, (ii) obfuscation, and (iii) propagation, as well as a
number of functions to support interpretation, execution, and
exception handling of attack profiles.

B. Smulation

Due to the controllability, reproducibility and scalability
of simulation, researchers have found it valuable in
evaluating anomaly detection systems over the last years
[19][20]. Currently the available simulators include NS [21],
OPNET [22], GNS [7], and so on. We use GNS3 as the
simulation method in the framework.

GNS3 is a multi-platform, open-source Graphical Net-
work Simulator. GNS3 allows the emulation of complex
network topologies by emulating many Cisco 10S router
platforms, IPS, PIX and ASA firewalls, and JunOS with the
help of Dynamips and Dynagen. Dynamips is the core
program behind the emulation process and the Dynagen tool
runs on top of it to creste a user-friendly, text-based
environment. GNS3 provides the graphica front-end for
Dynagen, so that users can create the topologies in a
graphical and user-friendly environment. GNS3 also alows
the emulation of ATM and Frame Relay switches, enables
packet capture using Wireshark.

The topology of the simulation network is created in NS2
format. Each backbone node was paired with an externa
interface. The externa interfaces represent traffic to network
resources externa to the simulation network. NS2 is a TCL
based scripting language which can use iterative control
structures.

MACE can use traffic generation tools as complements
used to generate legitimate (benign) background traffic.
Harpoon reproduces network traffic in an application-
oblivious manner [23]. Numerous application-aware traffic
generators like SURGE produce workloads to stress-test web
servers [24]. The LTProf tool produces legitimate traffic
models that describe communication between a set of active
clients and a network that is the target of a DDoS attack.

The experiment setup generator receives asinput (1) AS-
level and edge-network topologies from the topology library,
(2) legitimate and malicious traffic models generated by the
MACE. It glues these elements together into an ns file
containing topology specification and a collection of Perl
scripts, one for each attack from the list and one script for
legitimate-traffic- only testing.

C. Emulation

The emulation network in this framework is like DETER
[5]. The DETER testbed alows security researchers to
replicate threats of interest in a secure environment and to
develop, deploy and evaluate potentiad solutions. The
emulation network topology is shown in figure 2, including
three cluster of experimental PC nodes, with a common
control plane. There are roughly 50 nodes in total, currently.
These nodes are interconnected by a “programmable
backplane” of high-speed Ethernet switches, trunked to form
a single logical switch. Each experimenta PC has four
experimental interfaces and one control interface to this
switch.
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Figure 3. Distributed monitoring system of the Testbed

As shown is figure 3, in each cluster there is a monitor
capable of generating NetFlow about passing traffic (both
directions of the link are monitored without sampling or
packet loss) in the form of compressed nfdump files. The
traffic matrix is generated at analysis server which receives
compressed nfdump files a 1:00 am. each day. Further,
precomputed time series are provided from the whole
measurement period. This includes volumes of flows,
packets and bytes per 5 minutes interval differentiated by a
protacol (TCP, UDP, ICMP).

V. CONCLUSION

This paper addresses several issues related to
experimenting with current methods and enumerates four
properties of an idea evaluation method and proposed a
general framework for experimenting with network anomaly
detection methods. To this end, the framework consists of
various functions and methods used for anomaly detection.
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