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Abstract—In this paper, the recursive backstepping nonlinear 
control method is proposed. Based on the Lyapunov theory, 
the controllers are designed to achieve the new hyperchaotic 
system globally, asymptotically stabilized at the equilibrium 
point. Furthermore, a robust control method combining 
backstepping and sliding mode control techniques is used to 
control the system to another equilibrium point. Numerical 
simulation results show that the proposed control schemes are 
effective. 
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I.  INTRODUCTION  

Nonlinear chaotic control research is a popular problem 
in the nonlinear science field.  Since the chaotic phenomenon 
in economics was first found in 1985, great impact has been 
imposed on the prominent economics at present. Researches 
on the complicated economic system by applying nonlinear 
methods have been fruitful [1-3]. However, with the 
development of economy, the old financial chaotic system 
can't meet the needs of the market. Therefore, more and 
more scholars improve it by adding an additional state 
variable [4, 5]. Recently, a novel financial hyperchaotic 
system was brought up [6] on the ground of global economic 
crisis arousing from 2007. The dynamical behaviors of the 
new system are more complex.  

In this paper, we study the nonlinear control of the new 
hyperchaotic finance system by both recursive backstepping 
control and backstepping sliding mode control method.  
Backstepping method has become one of the important and 
popular approaches for nonlinear systems [7-9]. The each 
two backstepping method employed in this paper has its own 
characteristics, but both effective. Especially, the 
backstepping sliding mode method combines both the merits 
of backstepping control and sliding mode control. The 
Lyapunov stability theory is used to analyze the asymptotic 
stability at the equilibrium points. Moreover, numerical 
simulations are applied to verify the effectiveness of chosen 
controllers. By comparison, we can know that the difference 
of two methods and we can take corresponding way under 
different situations.  

The rest of this article is organized as follows: In Section 
2, the new hyperchaotic finance system is introduced. In 
Section 3, the recursive backstepping control is considered 
and numerical simulation results verify it. Then Section 4 
shows backstepping sliding mode control of the hyperchaotic 

finance system and corresponding numerical simulation 
results. Finally the conclusion is given in Section 5. 

II. THE NOVEL HYPERCHAOTIC FINANCE 

SYSTEM 

 The novel nonlinear hyperchaotic finance system [6] can 
be described by the following differential equation: 
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where variable x represents the interest rate, variable y 
represents the investment demand, variable z is the price 
exponent and variable w is the average profit margin, a, b, c, 
d, k are the positive parameters. When  a = 0.9, b = 0.2, c = 
1.5, d= 0. 2 and k=0.17, the system (1) shows hyperchaotic 
behavior. Figure 1 presents the chaotic attractor of financial 
hyperchaotic system. 

It is easy to see that system (1) has three equilibrium 
points: P0 (0, 1/b, 0, 0),

1,2

(1 )
( , , , )

( )

k ack d acP
c k d c cd ck

θ θθ + +±
− −

 ，

where
1

( )

kb abck
c d k

θ += +
−

. By calculation, equilibriums P0,1,2 are 

unstable saddle points in this nonlinear four-dimensional 
autonomous system . 

 
Fig. 1 The chaotic attractor of system (1) 

 

III. RECURSIVE  BACKSTEPPING NONLINEAR 

CONTROL 

 In this section, we will control hyperchaotic system (1) 
to equilibrium point P0 (0, 1/b, 0, 0) by using recursive 
backstepping nonlinear control method. 

  Consider the following nonlinear chaotic system and its 
responding controlled system: 

( ) ,x f x=                                  (2) 

( ) ( ) ,x f x u t= +                             (3) 
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where ( )1 2, , , nx x x x Τ=  , ( )1 2, , , n
ny y y y RΤ= ∈ are the 

state variables, : n nf R R→  are differentiable function 
vectors, ( )u t  is a control function and (0) 0u = . 

Let the error vector state be de x x= − , 

where ( )1 2, , , ne e e e Τ=  , dx Ae= , ( )ij n n
A a

×
=  is a constant 

vector, and when 1 i j n≤ ≤ ≤ , 0ija = . Thus, the error 

dynamical system can be described as follows: 

( ) ( )( ) ( )1
.e A I f A I e u t−  = + + + 
               (4) 

Choose the following Lyapunov function: 
2

1

1
,

2

n

i i
i

V k e
=

= 
    

then the time derivative of the Lyapunov function along the 
trajectory is  

1

n

i i i
i

V k e e
=

= 
. 

 By setting A, u(t) appropriate values, V(t) is positive 
definite and ( )V t  is negative definite. And then the error 

dynamical system (4) is asymptotically stable, namely the 
controlled nonlinear chaotic system (3) is asymptotically 
stable. 

  For this purpose, we have a transformation of 
hyperchaotic system (1) at the equilibrium point P0: 

,

1/ ,

,

,

X x
Y y b
Z z
W w

=
 = −
 =
 =

                               (5) 

then we suppose the controlled hyperchaotic finance system 
as follows: 

2
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                   (6) 

where u(t) is external control inputs. 
Let the error vector state be de x x= − , where 

( )T

1 2 3 4, , ,e e e e e= , ( , , , )x X Y Z W= , dx Ae= , ( )
4 4ijA a
×

= , 

and when 1 4i j≤ ≤ ≤ , 0ija = . Thus, the error dynamical 

system can be described as follows: 

( ) ( ) ( )
( )

( ) ( )
( )

1 31 1 32 42 2 43 3

2
41 4 21 1 1 2

2
2 21 1 2 1 21 1

3 21 32 31 1 32 32 2

2
3 32 1 21 32 31 1

1 1

1 ,

,

1

,

e a b a e a a e a e

a e a e e e

e ba e be e a e
e ba a ca e ba ca e

ce a e a a a e

= + − + + + +

+ + + +

= − − − −
= − − + −

− − + −



 




 

( ) ( )
( )

( ) ( )

4 21 42 21 32 43 43 43 41 1

32 43 42 32 43 42 2 43 43 3

2
4 42 32 43 21 1 1 2

21 42 31 43 41 21 32 43 1 .

de ba a ba a a a ca ka e
b

a a a a a ka e ca ka e

ke a a a da e de e

a a a a a a a a e u t

 = − + + − − 
 

+ − − − + −

− + − − −

+ + − − +





         (7) 

Theorem1. When setting
21 42 43 0a a a= = =  , 

( )41 /a b kd= − ,
1 2 3 0k k k= = = ,  

4 1k = , and 

( ) ( ) 1 1 2/u t b kd e de e= − + , the controlled hyperchaotic 

finance system (7) is asymptotically stable at equilibrium 
point (0, 0, 0,0). 

Proof: Choose the following Lyapunov function 

( )2 2 2 2
1 1 2 2 3 3 4 4

1

2
V k e k e k e k e= + + + , 

which is positive definite obviously, then the time derivative 
of the Lyapunov function along the trajectory is    

( ) ( )4 4 4 1 2 1/ ,V k e ke de e b kd e u t= − − + +  
   

when sets 
21 42 43 0a a a= = = , ( )41 /a b kd= − ,

1 2 3 0k k k= = = , 

4 1k = .Thus, the controller can be chosen as follows: 

( ) ( ) 1 1 2/u t b kd e de e= − + , 
and then we have 2

4V ke= − , which is negative definite 

obviously. According to Lyapunov stability theory, the 
controlled hyperchaotic finance system (6) is asymptotically 
stable at equilibrium point (0, 0, 0, 0).  

In the numerical simulations, the initial states of the 
controlled system (6) are selected as (1,2,1,1), and the 
behaviors of the states ( , , , )X Y Z W  of the controlled chaotic 
system (6) with time are displayed in Fig.2. 
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Fig.2 the time evolution of the states of the controlled system (6). 

IV. BACKSTEPPING SLIDING MODE CONTROL 

In this section, we will control chaotic system (3) to 
equilibrium point

1

(1 )
( , , , )

( )

k ack d acP
c k d c cd ck

θ θθ + +−
− −

  by using 

adaptive backstepping sliding mode control method.      
At first, we have a transformation of the hyperchaotic 

system (1) at the equilibrium point P1:  
,

,

,

(1 )
,

X x
k ackY y
ck cd

Z z
c
d acW w

cd ck

θ

θ

θ

= −
 + = −

−
 = +


+ = − −  
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then we assume that the controlled hyperchaotic finance 
system is as follows: 

( )

( )2
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,

(1 )
,

k acdX X XY Y Z W u t
ck cd

Y X X bY v t

Z X cZ
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= − − − +


= − −

 + = − − −
−









       (9) 

where u(t), v(t) is external control inputs. 
Definition 1.  Nonlinear strict feedback systems are of 

the form 
( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 1 1 1 1 2

2 2 1 2 2 1 2 3

1 1 1 1 1 1 1

1 1

,

, , ,
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ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ
− − − − −

 = +


= +


 = +
 = +






  
  

 

where 
1, , kξ ξ  are scalars. 

  Obviously, the hyperchaotic system (9) is not a strict 
feedback system and the ordinary backstepping technique 
cannot be used. But after careful examination, we notice that 
this system is made up of two coupled subsystems as follows: 

( )

( )2

,

,

2 ,

,

X mX XY Y Z W u t

Z X cZ

Y X X bY v t

W nX dXY d Y kW

θ

θ

θ

 = + + + + +


= − −
 = − − − +


= − − −









             (10) 

where k acdm
ck cd

+=
−

, (1 )dk acn
cd ck

+=
−

, and each subsystem is of 

strict feedback form. This kind of system is called cross-
strict feedback system. Since each subsystem of this 
hyperchaotic system is of strict feedback form, backstepping 
technique can be applied to each subsystem. The following 
design procedure is based on this idea. 

Step 1.  Define variable z1=Z,and its derivative is 

1 .z Z X cZ= = − −                           (11) 
Define the stabilizing function 

1 1 1c zα = ,where c1 is a 

positive constant. We choose the first Lyapunov function V1 
as 

2
1 1

1

2
V z= .                                      (12) 

Define variable 
2 1 1z z α= + , then the derivative of V1 is 

( ) 2
1 1 1 1 2 1 1 2 1 1 .V z z z z z z c zα= = − = −  .              (13) 

Step 2.  The derivative of z2 is now expressed as 

( )2 1 1 1 1z z X cZ c Z X c c Zα= + = − − + = − + −      .     (14) 
The second Lyapunov function V2 is chosen as follows 

2
2 1 1

1

2
V V σ= + .                             (15) 

where 
1 1 1 2k z zσ = +  is the sliding surface with 

1 0k > .Then 

the derivative of V2 can be derived as 

( )
( )( )

( )( )

2
2 1 1 1 1 2 1 1 1 1 1 2

2
1 2 1 1 1 1 1

.

V V z z c z k z z

z z c z k c c X cZ

mX XY Y Z W u t

σ σ σ

σ

θ

= + = − + +

= − + − + − −
− + + + + + 

    
         (16) 

According to (16), a backstepping sliding mode control 
law is designed as 

( ) ( )
( )( )

1 1 1 1

1 1 1 1

( ) 1

sgn ,

u t k c c m X c k c c Z

XY Y W hθ σ β σ

= − + + + − + +  
+ + + − +

.       (17) 

where h1 and β1 are positive constants. Substituting (17) into 
(16), the following function can be obtained 

( )( )2
2 1 2 1 1 1 1 1 1 1

2 2
1 2 1 1 1 1 1 1 1

sgn

.

V z z c z h

z z c z h h

σ σ β σ

σ β σ

 = − − + 
= − − −


.         (18) 

We choose a positive definite symmetric matrix Q with 
the form 

2
1 1 1 1 1

1 1 1

1

2 ,
1

2

c h k h k
Q

h k h

 + − 
=  
 −  

                      (19) 

and a vector [ ]T
1 2z z z= , then we have 

[ ] [ ]
2

1 1 1 1 1
TT

1 2 1 2

1 1 1

2 2 2 2
1 1 1 1 1 1 1 1 2 1 2 1 2

2 2
1 1 1 2 1 1

1

2
1

2

2

.

c h k h k
z Qz z z z z

h k h

c z h k z h k z z z z h z
c z z z hσ

 + − 
=  

 −  
= + + − +

= − +

       (20) 

Substituting (20) into (18), the following function can be 
derived 

T
2 1 1 1 .V z Qz h β σ= − −                      (21) 

According to (20), we obtain 

( ) ( )
2

2
1 1 1 1 1 1 1 1 1

1 1
.

2 4
Q h c h k h k h c k = + − − = + − 

 
     (22) 

Thus, we can keep 0Q >  by choosing the right values of 

constants h1, c1 and k1 , so 
2 0V ≤ . The system is negative 

definite. That is z1 and z2 will converge to zero as t → ∞ . 
Moreover, lim 0

t
X

→∞
=  and lim 0

t
Z

→∞
= . Therefore the 

backstepping controlled subsystem is asymptotically stable . 
Step 3.  Define variable 

3z W= , and its derivative is 

3 .z W nX dXY d Y kWθ= = − − −               (23) 
Define the stabilizing function 

2 2 3c zα = ,where c2 is a 

positive constant. We choose the  Lyapunov function V3 as 
2

3 3

1
.

2
V z=                                 (24) 

Define variable 
4 3 2z z α= + , then the derivative of V3 is 

( ) 2
3 3 3 3 4 2 3 4 2 3V z z z z z z c zα= = − = −  .         (25) 

Step 4.  The derivative of z4 is now expressed as  

( )
4 3 2 2

2 .

z z nX dXY dXY d Y kW c W

nX dXY dXY d Y c k W

α θ
θ

= + = − − − − +

= − − − + −

      
    

  (26) 
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The second Lyapunov function V4 is chosen as follows 
2

4 3 2

1

2
V V σ= + .                          (27) 

where 
2 2 3 4k z zσ = +  is the sliding surface with 

2 0k > .Then 

the derivative of V4 can be derived as 
( )2

4 3 2 2 3 4 2 3 2 2 3 4V V z z c z k z zσ σ σ= + = − + +      

( )
( )( ) ( )

2
3 4 2 3 2

2
2 22 .

z z c z nX dXY d X

X X bY v t c k k W

σ θ

θ

= − + − − + ⋅
− − − + + + − 

 


      (28) 

According to (28), a backstepping sliding mode control 
law is designed as 

( ) ( )
( ) ( )( )

12

2 2 2 2 2 2

( ) 2

sgn ,

v t X X bY d X n dY X

c k k W h

θ θ

σ β σ

− = + + + + −   
+ + − − + 




    (29) 

where h2 and β2 are positive constants. Substituting (17) into 
(16), the following function can be obtained 

( )( )2
4 3 4 2 3 2 2 2 2 2

2 2
3 4 2 3 2 2 2 2 2

sgn

.

V z z c z h

z z c z h h

σ σ β σ

σ β σ

 = − − + 
= − − −

        (30) 

We choose a positive definite symmetric matrix P with 
the form 

2
2 2 2 2 2

2 2 2

1

2 ,
1

2

c h k h k
P

h k h

 + − 
=  
 −  

                   (31) 

and a vector [ ]T
3 4'z z z= , then we have 

T 2 2 2 2
2 3 3 2 3 2 2 3 4 3 4 2 4

2 2
2 3 3 4 2 2

' ' 2

.

z Pz c z h k z h k z z z z h z
c z z z h σ

= + + − +

= − +
   (32) 

Substituting (32) into (30), the following function can be 
derived 

T
4 2 2 2' ' .V z Pz h β σ= − −  

According to (32), we obtain 

( ) ( )
2

2
2 2 2 2 2 2 2 2 2

1 1
.

2 4
P h c h k h k h c k = + − − = + − 

 
 

Thus, we can keep 0P >  by choosing the right values of 

constants h2, c2 and k2 , so 
4 0V ≤ . The system is negative 

definite. That is z3 and z4 will converge to zero as t → ∞ . 
Moreover, lim 0

t
Y

→∞
=  and lim 0

t
W

→∞
= . Therefore the 

backstepping controlled subsystem is asymptotically stable . 
  As a result, the stability of the proposed backstepping 

sliding mode control system (10) can be guaranteed. 
  In the numerical simulations, the initial states of the 

controlled system (10) are selected as (1,2,1,1), and 

1 1 1 2k h c= = = , 
2 2 2 3k h c= = = , 

1 2 1β β= = .  Figure 3 present 

us the behaviors of the states ( , , , )X Y Z W  of the controlled 
chaotic system (10) with time. 

V. CONCLUSION  

In this paper, the recursive backstepping nonlinear  
control and backstepping sliding mode control  finance 
system proposed nearly are studied. The hyperchaotic system 
is controlled to its equilibrium points by designing 

appropriate controllers with two methods respectively. 
Numerical simulations demonstrate the efficiency of both the 
proposed control schemes. Then, we can see where the  
worth of the study here: it can provide reference for 
government regulation when the economic crisis happens. 
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Fig.3 the time evolution of the states of the controlled system (11) 
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