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Abstract

In this paper one considers the problem of finding solutions to a number of Toda-
type hierarchies. All of them are associated with a commutative subalgebra of the
k×k-matrices. The first one is formulated in terms of upper triangular Z×Z-matrices,
the second one in terms of lower triangular ones and the third is a combination of the
two foregoing types. It is shown that in an appropriate group setting solutions of
the linearization of these Lax equations can be constructed by using a Birkhoff-type
decomposition in the relevant group.

1 Introduction

A well-known example of a system of differential difference equations is the equations of
motion of an infinite number of particles on a straight line, the so-called infinite Toda-
chain. Recall from [11] that these equations in dimensionless form have the form

dqn

dt
= pn and

dpn

dt
= e−(qn−qn−1) − e−(qn+1−qn), n ∈ Z. (1.1)

Here qn is the displacement of the n-th particle. One can reformulate these equations as
an equality between infinite matrices by defining

an :=
1

2
e−(qn−qn−1) and bn :=

1

2
pn.

The equations (1.1) get then the form

dan

dt
= an(bn − bn−1) and

dbn

dt
= 2(a2

n−1 − a2
n), n ∈ Z. (1.2)
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If one introduces the Z × Z-matrices L and B by
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and B =
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

,

then a direct computation shows that the equations (1.2) amount to the matrix equation

dL

dt
= BL− LB = [B,L]. (1.3)

This is an example of a so-called Lax equation, because it suggests that the matrix L is
obtained by conjugating a matrix that does not depend of t with a t-dependent one, a
phenomenon first observed in the KdV -setting by P.Lax, see [8]. Several variations and
extensions on the above situation have been considered, see e.g. [2] ,[12] and [6], the
last one describing the algebraic structure behind various formulations. These systems of
equations play a role in various parts of mathematics, like random matrices and orthogonal
polynomials, see [1] and [5], but also in a diversity of subjects from theoretical physics,
such as matrix models, quantum gravity and string theory. To get an impression of these
connections we refer to [10], [7], [3] and [9].

In this paper one considers the problem of finding solutions to a number of Toda-type
hierarchies. All of them are associated with a commutative subalgebra of the k × k-
matrices. The first one is formulated in terms of upper triangular Z × Z-matrices, the
second one in terms of lower triangular ones and the third is a combination of the two
foregoing types. It is shown that in an appropriate group setting solutions of the lineariza-
tion of these Lax equations can be constructed by using the Birkhoff decomposition in the
relevant group. A description of the various sections is as follows: the first introduces the
relevant notations and general properties of Z × Z-matrices. The next section discusses
the various hierarchies with their corresponding linearizations and oscillating matrices of
a certain type. It also gives a useful sufficiency criterion for oscillating matrices to yield
solutions of the hierarchies. In the subsequent section, a Banach setting is presented in
which the formal products from the linearization become genuine products. Also the de-
composition of the group of commuting flows is discussed there. In the final section one
concludes with the construction of the solutions

2 The space MZ(R)

The hierarchies of Toda-type that form the subject of this paper consist of nonlinear
equations for a number of Z × Z-matrices whose coefficients are depending of the flow
parameters. Therefore the basic prerequisites of this space will be recalled.

Let R be a commutative ring. The ring of k × k−matrices with coefficients from R is
denoted by Mk(R). Likewise one writes MZ(R) for the R-module of Z × Z-matrices with
coefficients from R. The ordering of the columns and rows in MZ(R) that will be used is
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the one that is compatible with the finite dimensional case, i.e. any matrix A = (αij) in
MZ(R) is denoted by

A =










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






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

















There are a number of special elements in MZ(R) that will be used frequently. First of
all, there is the basic matrix E(i,j), i and j ∈ Z, given by

(E(i,j))µν = δiµδjν .

Thus one can describe every A = (Aij) ∈ MZ(R) as a formal linear combination of the
basic matrices

A =
∑

i∈Z

∑

j∈Z

AijE(i,j).

A dominant role in this paper is played by the shift matrix Λ given by

Λ =
∑

i∈Z

E(i−1,i).

With every collection {d(ks)|s ∈ Z} of matrices in Mk(R) one associates the diagonal of
k-blocks diag(d(ks)) in MZ(R) given by

diag(d(ks)) :=
∑

s∈Z

k
∑

α=1

k
∑

β=1

d(ks)αβE(s+α−1,s+β−1).

Its matrix looks as follows

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














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


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







For each k ≥ 1, denote the ring of k-block diagonal matrices in MZ(R) by

Dk(R) = {d = diag(d(ks))|d(ks) ∈Mk(R) for all s ∈ Z}.

One has a ringhomomorphism ik from Mk(R) into Dk(R) by taking for an A ∈Mk(R) all
diagonal blocks of ik(A) equal to A. In particular every Dk(R) becomes a Mk(R)-algebra
in this way. The elements Λkm, m ∈ Z, act on Dk(R) according to

Λkmdiag(d(ks))Λ−km = diag(d(ks + km)). (2.1)
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Therefore the image of ik consists of all matrices in Dk(R) that commute with Λk. This
relation implies further that for each m 6= 0 any dΛkm with d = diag(d(ks)) ∈ Dk(R)
invertible can be written as

diag(d(ks))Λkm = w0Λ
kmw−1

0 , with w0 ∈ Dk(R).

A specific choice of the element w0 = diag(w0(ks)) is as follows: first of all one takes for
all s0 with 0 ≤ s0 < |m|, the matrix w0(s0k) equal to the identity. Next one defines for
all these s0 and all t ≥ 1

w0((s0 + tm)k) := d((s0 + (t− 1)m)k)−1 · · · d(s0)
−1, (2.2)

w0((s0 − tm)k) := d((s0 − tm)k) · · · d((s0 −m)k)

Each matrix in MZ(R) can be divided into so-called k-block diagonals. For, one defines
namely

Definition 1. For each j ∈ Z, the j-th k-block diagonal of any matrix A = (Aij) ∈MZ(R),
is the Z × Z-matrix

∑

i∈Z

k
∑

α=1

k
∑

β=1

A(ki−kj+α−1,ki+β−1)E(ki−kj+α−1,ki+β−1.

From equation (2.1) it is clear that the j-th k-block diagonal of a Z × Z-matrix A can
uniquely be written in the form diag(d(ks))Λkj or Λkjdiag(c(ks)) with diag(d(ks)) and
diag(c(ks)) ∈ Dk(R). Thus each A = (A(i,j)) ∈MZ(R) can uniquely be written as

A =
∑

j∈Z

djΛ
kj or A =

∑

j∈Z

Λkjcj , (2.3)

with dj and cj in Dk(R). In particular any matrix that commutes with Λk has the form
(2.3) with dj and cj in the image of ik.

To the first decomposition in (2.3) one links two notations: if A =
∑

j∈Z
djΛ

j as in
(2.3) then one writes

A+(k) =
∑

j≥0

djΛ
kj and A−(k) =

∑

j<0

djΛ
kj .

Inside MZ(R) two subspaces are considered that are rings w.r.t. the usual product

Definition 2. An element A in MZ(R) is called upper k-block triangular of level m, if it
can be written as

A =
∑

j≥m

djΛ
kj, with dj ∈ Dk(R).

One calls m the order of A in Λk, if dm is nonzero. The collection of all these elements

is denoted by UTm, UTm(R) or UT
(k)
m (R), depending, if one has to stress where the

coefficients come from, what the size of the blocks along the diagonal is or both. Likewise
one uses the notations

UT (R) :=
⋃

k∈Z

UTk =: UT

for the set of all uppertriangular matrices.
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One verifies directly that UT with the product forms an R-algebra. All commutative
R-subalgebras of UT that contain the element Λk have the following form: choose any
commutative R-subalgebra C of Mk(R), then the required algebra consists of the

U(C) := {
∑

i≥N

ik(ci)Λ
ki | with ci ∈ C for all i}.

Likewise one introduces the opposite class of matrices

Definition 3. An element A in MZ(R)is called lower k-block triangular of level m, if it
can be written as

A =
∑

j≤m

djΛ
kj, with dj ∈ D(R).

Like for UT we call m the order of A in Λk, if dm is nonzero. The collection of all these

elements is denoted by LTm, LTm(R) or LT
(k)
m (R), depending of the dependence that has

to be stressed. Similarly, the notations

LT (R) :=
⋃

k∈Z

LTk =: LT

are used for the set of all lowertriangular matrices.

Again one verifies easily that LT with the usual product forms an algebra over R. The
commutative R-subalgebras of UT containing the element Λk can be described as follows:
let C as above be any commutative R-subalgebra of Mk(R), then

L(C) := {
∑

i≤N

ik(ci)Λ
ki | with ci ∈ C for all i}

is the required algebra. If C is maximal commutative inside Mk(R), then the same holds
for L(C).

Note that, if U ∈ UT and V ∈ LT have the form respectively

U =
∑

i≥0

uiΛ
ik and V =

∑

i≤0

viΛ
ik,

with u0 and v0 invertible in Dk(R), then the elements U and V are invertible and the
diagonal k-block components of their inverses can be computed recursively.

3 The hierarchies of Toda-type

From now on one assumes that R is an algebra over C such that C is isomorphic to the
subalgebra {α.1 | α ∈ C} of R. Then Mk(C) is naturally a subring of Mk(R).

The first hierarchy is similar to the multicomponent KP-hierarchy and its variations.
Only now the hierarchy is formulated in terms of Z×Z-matrices, not of pseudodifferential
operators. One starts with a commutative subalgebra hL of Mk(C). Let {Eα | 1 ≤ α ≤
mL} be a basis of hL. Inside LT one is interested in matrices of the form

L :=
∑

i≤1

liΛ
ki and Uα =

∑

i≤0

ui,αΛki, 1 ≤ α ≤ mL, (3.1)
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with l1 = ik(Id) and u0,α = ik(Eα). They should be seen as perturbations inside LT of
the special cases L = Λk and Uα = ik(Eα). As such the perturbation should first of all
respect the commutation relations that existed between the basic generators

[L, Uα] = 0 and [Uα, Uβ ] = 0 for all α and β,

and secondly the algebraic relations inside hL

UαUβ =
∑

γ

C
γ
αβUγ , where EαEβ =

∑

γ

C
γ
αβEγ .

More importantly, the matrices L and the Uα should satisfy a number of nonlinear differ-
ential equations. For all the indices i ≥ 0 and all α, 1 ≤ α ≤ mL, one writes Piα := LiUα.
Then the algebra R should be equiped with a collection of commuting C-linear derivations
∂Piα

: R 7→ R. In principle one thinks of ∂Piα
as representing differentiation in the direc-

tion Λkiik(Eα). The so-called Lax equations of the lower triangular hL-hierarchy are then
by definition

∂Piα
(L) = [(Piα)+,L] and ∂Piα

(Uβ) = [(Piα)+, Uβ]. (3.2)

These equations are equivalent to zero curvature relations for all the finite-band matrices
{Biα := (Piα)+}. The Lax equations also result from the so-called linearization. Thereto
one considers the function

ψ0 := exp(

∞
∑

i=0

tiαik(Eα)Λki).

It belongs to UT (C[tiα]). It is the generator of the LT (R)-module M (∞) of oscillating
matrices at infinity. This module consists of formal products

{
N

∑

j=−∞

djΛ
kj} exp(

∞
∑

i=0

tiαik(Eα)Λki), where dj ∈ Dk(R).

The action of LT (R) on M (∞) is defined as follows: for all p1 and p2 ∈ LT (R) one puts

p1{p2} exp(

∞
∑

i=0

tiαik(Eα)Λki) = {p1p2} exp(

∞
∑

i=0

tiαik(Eα)Λki).

Clearly, it is a free LT (R)-module with ψ0 as generator. Since the matrix ψ0 commutes
with Λk and ik(Eα), multiplication from the right with these elements is well-defined on
M (∞). Also the action of the derivations {∂Piα

} can be extended to M (∞) as if the product
was real

∂Piα
{

N
∑

j=−∞

djΛ
j}ψ0 = {

N
∑

j=−∞

∂Piα
(dj)Λ

kj +

N
∑

j=−∞

djΛ
k(i+j)ik(Eα)}ψ0.

For matrices L and the Uα of the form (3.1) one can consider inside M (∞) the equations

Lψ = ψΛk, Uβψ = ψik(Eβ) and ∂Piα
(ψ) = Biαψ, (3.3)
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for all i ≥ 0, 1 ≤ α ≤ mL. This is the linearization of the lower triangular hL-hierarchy.
Under a mild condition on ψ ∈ M (∞) they imply that L and the Uα satisfy the Lax
equations (3.2). Assume namely that ψ = ψ̂δLψ0, where δL is an invertible element of
LT (C) that commutes with Λk and all the ik(Eα) and where ψ̂ ∈ LT (R) is such that its
leading coefficient is invertible. In particular ψ̂ is invertible in LT (R) and this ψ is also a
free generator of M (∞). An oscillating matrix at infinity of this form is called of type δL.

The first two equations of the linearization imply then that L and the Uβ are totally

determined by ψ̂. Namely, they are equivalent to

L := ψ̂δLΛkδ−1
L ψ̂−1 and Uβ = ψ̂δLik(Eβ)δ−1

L ψ̂−1 (3.4)

To get the Lax equations for L one applies ∂Piα
to the first equation in (3.3) and substitute

the last one. This yields

∂Piα
(Lψ − ψΛk) = ∂Piα

(L)ψ + L(∂Piα
(ψ)) − (∂Piα

(ψ))Λk = (3.5)

∂Piα
(L)ψ + LBiαψ −BiαψΛk = {∂Piα

(L) − [Biα,L ]}ψ = 0. (3.6)

As ψ is a free generator of the LT (R)-module M (∞),

∂Piα
(L) − [Biα,L ] = 0.

Similarly, applying {∂Piα
} to the second equation of the linearization and substituting the

last one, renders

∂Piα
(Uβψ − ψik(Eα)) = ∂Piα

(Uβ)ψ + Uβ(∂Piα
(ψ)) − (∂Piα

(ψ))Eβ =

∂Piα
(Uβ)ψ + UβBiαψ −BiαψEβ = {∂Piα

(Uβ) − [Biα, Uβ ]}ψ = 0.

This gives then the Lax equations for the Uβ. An oscillating matrix at infinity of type δL,

ψ = ψ̂δLψ0, is also called a wavematrix at infinity of type δL for the operators L := ψ̂Λkψ̂−1

and Uβ = ψ̂ik(Eβ)ψ̂−1, if it satisfies the equations (3.3). To prove the equations (3.3) for
an oscillating matrix at infinity ψ of the right form, one uses the fact that it suffices to
prove a weaker result, namely

Proposition 1. Let ψ = ψ̂δLψ0, with ψ̂−Λkj ∈ LTj−1, be an oscillating matrix at infinity
of type δL. If it satisfies for all i ≥ 0 and all α, 1 ≤ α ≤ mL,

∂Piα
(ψ) = Fiαψ, with Fiα ∈ LT (R) ∩ UT0(R),

then Fiα = (LiUα)+, where L := ψ̂Λkψ̂−1 and Uβ = ψ̂ik(Eβ)ψ̂−1. In particular the L and
Uβ form a solution to the lower triangular hL-hierarchy.

Proof. From the definition of the action of {∂Piα
} on M (∞) and the fact that M (∞) is a

free LT (R)-module with generator ψ0, one obtains inside LT (R) the matrix equality

∂Piα
(ψ̂) + ψ̂(Λk)iik(Eα) = Fiαψ̂.

Since ∂Piα
(ψ̂)ψ̂−1 ∈ LT−1, multiplying this equation from the right with ψ̂−1 and taking

the uppertriangular part gives the desired result. �
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The second hierarchy is concerned with perturbations inside UT (R) of the commutative
algebra generated by Λ−k and ik(hU ) with hU a commutative algebra of Mk(C). Let
{Fα | 1 ≤ α ≤ mU} be a basis of hU . Concretely, one searches then for matrices M and
Vα of the form

M :=
∑

i≥−1

miΛ
ki and Vα := w0ik(Fα)w−1

0 +
∑

i>0

ṽi,αΛki, (3.7)

where the element m−1 is invertible and w0 = diag(w0(ks)) is the gauge corresponding to

m−1 = w0Λ
−kw−1

0

as given in equation (2.2). If the multiplication inside hU is given by

FαFβ =
∑

γ

D
γ
αβFγ ,

then the matrices M and Vα should first of all satisfy the algebraic relations of their
unperturbed counterparts

[M, Vα] = 0 and VαVβ =
∑

γ

D
γ
αβVγ . (3.8)

Note that these equations are automatically satisfied if one takes M and Vα of the form

M = WΛ−kW−1 and Vα = Wik(Fα)W−1,

with W =
∑

j≥mwjΛ
kj, wj ∈ Dk(R) and wm invertible. For all j ≥ 1 and all β, 1 ≤ β ≤

mU , one writes Qjβ := MjVβ and Cjα = (Qjα)−. The search is for a C-algebra R equiped
with a collection of C-linear commuting derivations {∂Qjβ

, j ≥ 1, 1 ≤ β ≤ mU}. The
nonlinear differential equations one wants M and the Vβ to satisfy are

∂Qjα
(M) = [Cjα,M] and ∂Qjα

(Vβ) = [Cjα, Vβ] (3.9)

and are called the Lax equations of the upper triangular hU -hierarchy. They follow from a
linear system that requires the introduction of a suitable left UT (R)-module. Again the
actual form of the elements in the module is guided by the trivial solution M = Λ−k and
Vα = ik(Fα) of the hierarchy. Thinking of ∂Qjβ

as taking the partial derivative ∂sjβ
w.r.t.

the parameter sjβ along the direction ik(Fα)Λ−jk, consider the Z × Z-matrix

φ0 := exp(

∞
∑

j=1

mU
∑

β=1

sjβik(Fα)Λ−jk)

This matrix belongs to LT (C[sjα]). The module for the linearization will consist of per-
turbations in UT (R) of this matrix φ0. Consider namely the collection M (0) consisting of
formal products

{
∞

∑

j=N

djΛ
kj} exp(

∞
∑

j=1

mU
∑

β=1

sjβik(Fβ)Λ−kj), where dj ∈ Dk(R).
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The elements of M (0) are called oscillating matrices at zero. In general these formal
products do not give a well-defined Z×Z-matrix. Nevertheless there is a well-defined left
action of UT (R) on it. For all u1 and u2 ∈ UT (R) one puts namely

u1{u2}φ0 = {u1u2}φ0.

Note that M (0) is a free UT (R)-module with generator φ0. Other generators are elements
of the form φ = φ̂δUφ0 in M (0), where δU is an invertible element of UT (C) that commutes
with Λ−k and all the ik(Fβ) and φ̂ ∈ UT (R) is such that

φ̂ =
∞
∑

i=m

diΛ
ki, with dm invertible. (3.10)

An element of M (0) of this form is called an oscillating matrix at zero of type δU . Note
that the right multiplication with Λ−k and ik(Fβ) is well-defined on elements of M (0),
since both matrices commute with the generator φ0. An action of the derivations ∂Qjβ

on

M (0) can be defined as follows

∂Qjβ
{

∞
∑

j=N

djΛ
j}φ0 = {

∞
∑

j=N

∂Qjβ
(dj)Λ

j +

∞
∑

j=N

djΛ
j(Λ)−kjik(Fβ)}φ0.

For matrices M and Vα of the required form and satisfying the conditions (3.8) the lin-
earization of the hU -hierarchy consists of the following equations inside M (0)

Mφ = φΛ−k, Vαφ = φik(Fα) and ∂Qjβ
(φ) = Cjβφ. (3.11)

Note that if φ = φ̂δUφ0 in these equations is of the form (3.10), then the first two equations
imply that the matrices M and Vα are given by

M = φ̂Λ−kφ̂−1 and Vα = φ̂ik(Fα)φ̂−1. (3.12)

This is silently assumed from now on. To get the Lax equations for M one applies the
derivation ∂Qjβ

to the first equation in (3.11) and subtitutes the last one. This leads to
the following manipulations

∂Qjβ
(Mφ− φΛ−k) = ∂Qjβ

(M)φ+ M(∂Qjβ
(φ)) − (∂Qjβ

(φ))Λ−k =

∂Qjβ
(M)φ+ MCjβφ− CjβφΛ−k = {∂Qjβ

(M) − [Cjβ,M ]}φ = 0.

Since φ may be scratched from this equation, one obtains in this way the Lax equations for
M. For the operator Vα one applies ∂Qjβ

to the second equation in (3.11) and substitutes
the last one. Thus one gets

∂Qjβ
(Vαφ− ψFα) = ∂Qjβ

(Vα)ψ + Vα(∂Qjβ
(φ)) − (∂Qjβ

(φ))Fα =

∂Qjβ
(Vα)φ+ VαCjβφ− CjβφFα = {∂Qjβ

(Vα) − [Cjβ, Vα ]}φ = 0.

and, since one can leave out φ again, this yields the Lax equations for the Vα.
An oscillating matrix at zero of type δU , φ = φ̂δUφ0, is called a wavematrix at zero of

type δU for the matrices M = φ̂Λ−kφ̂−1 and Vα = φ̂ik(Fα)φ̂−1, if it satisfies the equations
(3.11). Since the manipulations to get the Lax equations are well-defined on such a φ, the
set of matrices (M, Vα) forms a solution of the upper triangular hU -hierarchy.

If one wants to prove the equations (3.11) for an oscillating matrix at zero φ of the
right form, it suffices to prove a weaker result, for there holds
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Proposition 2. Let φ = φ̂δUφ0 be an oscillating matrix at zero of type δU . If it satisfies
for all j ≥ 1 and all β, 1 ≤ β ≤ mU

∂Qjβ
(φ) = Gjβψ, with Gjβ ∈ UT (R) ∩ LT0(R),

then Gjβ = (MjVβ)−, where M := φ̂Λ−kφ̂−1 and Vβ = φ̂ik(Fβ)φ̂−1. In particular M and
the Vβ form a solution to the upper triangular hU -hierarchy

Proof. From the definition of the action of ∂Qjβ
on M (0) and the fact that M (0) is a free

UT (R)-module with generator φ0, we get the operator equation

∂sjβ
(φ̂) + φ̂(Λ)−kjik(Fβ) = Gjβφ̂.

Multiplying this equation from the right with φ̂−1 and taking the lowertriangular part
gives the desired result. �

The third hierarchy is a combination of the two foregoing ones and is called the (hL, hU )-
hierarchy. First of all one has the corresponding potential solutions, namely the matrices
L and Uα in LT (R) of the form (3.1) and the matrices M and Vα in UT (R) of the form
(3.7). Further one assumes the C-algebra R to be equiped with two collections of C-linear
commuting derivations namely the {∂Piα

, i ≥ 0, 1 ≤ α ≤ mL} and the {∂Qjβ
, j ≥ 1, 1 ≤

β ≤ mU}. The Lax equations of this hierarchy consist not only of those in (3.2) and (3.9),
but also include the following evolution of L and Uα w.r.t. ∂Qjβ

∂Qjβ
(L) = [Cjβ,L] and ∂Qjβ

(Uα) = [Cjβ, Uα]

and that of M and Vσ w.r.t. ∂Piα

∂Piα
(M) = [Biα,M] and ∂Piα

(Vσ) = [Biα, Vσ].

From these last two sets of equations one sees that the unperturbed choice

L = Λk, Uα = ik(Eα),M = Λ−k and Vβ = ik(Fβ),

is a solution of these Lax equations if and only if the algebras hL and hU commute. This
will be assumed from now on, without further mentioning.

Again there exists a linearization of the (hL, hU )-hierarchy from which these Lax equa-
tions can be deduced. It consists of the equations

Lψ = ψΛk, Uγψ = ψik(Eγ), (3.13)

∂Qjβ
(ψ) = Cjβ(ψ), and ∂Piα

(ψ) = Biαψ, (3.14)

Mφ = φΛ−k, Vσφ = φik(Fσ), (3.15)

∂Piα
(φ) = Biαφ, and ∂Qjβ

(φ) = Cjβφ. (3.16)

Here the action of the {∂Qjβ
, j ≥ 1, 1 ≤ β ≤ mU} on the elements of M (∞) is defined by

∂Qjβ
({

N
∑

r=−∞

drΛ
kr}ψ0) = {

N
∑

r=−∞

∂Qjβ
(dr)Λ

kr}ψ0
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and that of the {∂Piα
, i ≥ 0, 1 ≤ α ≤ mL} on M (0)

∂Piα
({

∞
∑

s=N

dsΛ
ks}φ0) = {

∞
∑

s=N

∂Piα
(ds)Λ

ks}φ0.

Let as before δL be an invertible element of UT (C) ∩ LT (C) that commutes with Λk and
all the ik(Eα) and let δU be an invertible element of UT (C)∩LT (C) that commutes with
Λ−k and all the ik(Fβ). Assume that δL and δU commute. For the unperturbed solution
the oscillating functions

ψ = {exp(
∞

∑

j=1

mU
∑

β=1

sjβik(Fα)Λ−jk)δU}δLψ0

and

φ = {exp(

∞
∑

i=0

tiαik(Eα)Λki)δL}δUφ0

satisfy the linearization for the derivations ∂Piα
= ∂

∂tiα
and ∂Qjβ

= ∂
∂sjβ

. Assume ψ =

ψ̂δLψ0 ∈ M (∞) in the equations (3.13) and (3.14) is an oscillating matrix at infinity of
type δL and let φ = φ̂δUφ0 ∈ M (0) in the equations (3.15) and (3.16) be an oscillating
matrix at zero of type δU . It follows from (3.13) that the matrices L and Uα are given by
(3.4) and the matrices M and Vα by (3.12). By applying again both sets of derivations to
the equations of (3.13) resp. (3.15) and by substituting those of (3.14) resp. (3.16) and
scratching the function ψ resp. φ one obtains the Lax equations for L and the Uα and
those for M and the Vβ. A pair (ψ, φ) = (ψ̂δLψ0, φ̂δUφ0) in M (∞) ×M (0) consisting of an
oscillating matrix ψ at infinity of type δL and an oscillating matrix φ at zero of type δU
is called a pair of wavematrices of the (hL, hU )-hierarchy of type (δL,δU ), if they satisfy
the equations in (3.13) ,(3.14),(3.15) and (3.16) for the Z × Z-matrices L := ψ̂Λkψ̂−1,
Uα := ψ̂Eαψ̂

−1, M := φ̂Λ−kφ̂−1 and Vα := φ̂Eαφ̂
−1. As one has seen this collection of

matrices forms then a solution of the Lax equations of the (hL, hU )-hierarchy.
Also in the coupled case, it suffices that an apparently weaker version of the equations

(3.14) resp. (3.16) holds for a candidate pair (ψ, φ). By combining the propositions (1)
and (2) one gets namely

Proposition 3. Consider a pair (ψ, φ) = (ψ̂δLψ0, φ̂δUφ0) in the space M (∞) × M (0)

consisting of an oscillating matrix ψ at infinity of type δL and an oscillating matrix φ at
zero of type δU . If they satisfy the equations

∂Piα
(ψ) = Fiαψ and ∂Piα

(φ) = Fiαφ, with Fiα ∈ LT (R) ∩ UT0(R),

∂Qjβ
(ψ) = Gjβψ and ∂Qjβ

(φ) = Gnφ, with Gjβ ∈ UT (R) ∩ LT0(R),

then Fiα = (LiUα)+, where L := ψ̂Λkψ̂−1 and Uα = ψ̂ik(Eα)ψ̂−1, and Gjβ = (MjVβ)−,

with M := φ̂Λ−1φ̂−1 and Vβ = φ̂ik(Fβ)φ̂−1. In particular the set (L, Uα,M, Vβ) is a
solution of the (hL, hU )-hierarchy.

Remark 1. Note that if one chooses the algebra hU = {0}, then the (hL, {0})-hierarchy
is the lower triangular hL-hierarchy and the choice hL = {0} yields the upper triangular
hU -hierarchy.
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Under suitable convergence conditions the formal products occurring in as well the
space M (∞) as M (0) turn into real products. Such an analytic setting is described in
the following section. It will allow you to generate families of solutions of the (hL, hU )-
hierarchy.

4 An analytic setting

One starts with a complex Banach space (H, |||̇|H) equiped with a topological basis {ei |
i ∈ Z}. That is to say every h ∈ H decomposes uniquely as

h =
∑

i∈Z

αiei and h = lim
N 7→∞

N
∑

i=−N

αiei.

To each bounded linear operator A : H 7→ H one can associate the Z×Z-matrix [A]; = (αji)
w.r.t. this basis defined by

A(ei) =
∑

j∈Z

αjiej .

In view of the character of the flows of the hierarchies it is convenient to realize H as a
space of vector-valued series. More concretely, let {fi | 0 ≤ i ≤ k − 1} be the standard
basis of C

k, where fi has a one as the i+ 1-th entry and zeros elsewhere. Then we make
for all j ∈ Z and all s, 0 ≤ s ≤ k − 1, the identification

es+kj := fsz
j .

and thus get that any element h ∈ H can be uniquely written as

h =
∑

j∈Z

h(j)zj , with h(j) ∈ C
k.

In order that we can carry out the construction of the solutions of the (hL, hU )-hierarchy
the space H has to satisfy a number of assumptions. First of all multiplying with z

∑

j∈Z

h(j)zj 7→
∑

j∈Z

h(j)zj+1

should be a bounded invertible operator Mz : H 7→ H whose operator norm is equal
to ||Mz ||. Its matrix [Mz] is the matrix Λk. Also for each complex k × k−matrix A

multiplication with A,
∑

j∈Z

h(j)zj 7→
∑

j∈Z

A(h(j))zj

should be a bounded operator MA : H 7→ H. Its matrix [MA] is clearly ik(A). Examples
of spaces satisfying these conditions are the Lp(S1,Ck).

For each i ∈ Z, let H(i) be the complex subspace of H spanned by the

{fsz
i | 0 ≤ s ≤ k − 1}.
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The projection H 7→ H(i) given by
∑

j∈Z
h(j)zj 7→ h(i)zi is denoted by p(i). The space H

decomposes as the direct sum
H = ⊕i∈ZH

(i)

and this determines for each bounded linear operator B ∈ B(H) the corresponding block
decomposition (p(i) ◦B | H(j)). Inside GL(H) we introduce two fundamental groups that
occur in the basic decomposition. First there is the parabolic group

P =

{

g | g ∈ GL(H),
p(i) ◦ g | H(j) = p(i) ◦ g−1 | H(j) = 0

for all i, j ∈ Z, i < j

}

with its Lie algebra

L(P ) =
{

g | g ∈ B(H), p(i) ◦ g | H(j) = 0 for all i, j ∈ Z, i < j
}

.

Further there is the unipotent part of the opposite parabolic

U− =

{

g | g ∈ GL(H),
p(i) ◦ g | H(i) = Id for all i ∈ Z

p(i) ◦ g | H(j) = 0 for all i, j ∈ Z, i > j

}

with its Lie algebra

L(U−) =
{

g ∈ B(H), p(i) ◦ g | H(j) = 0 for all i, j ∈ Z, i ≥ j
}

.

Clearly B(H) = L(P ) ⊕ L(U−) and the map χ : L(P ) ⊕ L(U−) 7→ GL(H) defined by
χ(u, p) = exp(u) exp(p) is a local diffeomorphism at (0, 0). Hence the set Ω := U−.P is
open in GL(H). The Birkhoff-type decomposition of the elements of Ω enables one to
construct solutions of the hierarchies.

Next the commuting flows relevant for the (hL, hU )-hierarchy will be discussed. Let U
be an open connected neighbourhood in the complex plane of the circle

S(||Mz ||) = {z | z ∈ C, |z| = ||Mz ||}.

For any commutative subalgebra h of glk(C) let Γ(U,h) be the set of holomorpic maps γ :
U 7→ h such that det(γ(u)) 6= 0 for all u ∈ U . It is a group for the pointwise multiplication
in GLk(C). If two such neighbourhoods U1 and U2 satisfy U2 ⊂ U1 then one has a natural
embedding of Γ(U1,h) into Γ(U2,h) and the inductive limit is denoted by Γ(h). Each
γ ∈ Γ(h) has a Fourier series

∑

i∈Z

γiz
i, with γi ∈ h.

and the multiplication with this series defines a bounded operator Mγ : H 7→ H. This
determines an embedding of Γ(h) into GL(H). Let hss denote the subset of semi simple
elements in h and let hn be the collection of nilpotent elements in h. From the fact that h

is the direct sum of these subspaces one deduces that the group Γ(h) is the direct product
of the groups

Γ(h)ss := {γ | γ(u) ∈ hss for all u}

and
Γ(h)u := {γ | γ(u) is unipotent for all u}.
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Now it is easy to see that any γ ∈ Γ(h)u can be written as

γ = exp(
∑

s∈Z

ksz
s), where ks ∈ hn for all s ∈ Z,

= exp(
∑

s≥0

ksz
s) exp(

∑

s<0

ksz
s)

This shows that the elements of Γ(h)u split up perfectly in those that have an analytic
continuation to the interior of S(||Mz ||) and those that extend holomorphically around
”infinity”.

As for the group Γ(h)ss, recall, see e.g. [4], that, if U is an open connected neighbour-
hood of S(||Mz ||), any holomorphic f : U 7→ C

∗ decomposes as

f(z) = {1 +
∑

i<0

biz
i}zm{

∑

j≥0

cjz
j}, with c0 6= 0 and m ∈ Z.

By applying this to the group Γ(h)ss, one arrives at the following decomposition of Γ(h)

Proposition 4. There is a subgroup ∆(h) of Γ(h)ss isomorphic to Z
r, where r is the

dimension of hss such that Γ(h)=Γ(h)+ ∆(h) Γ(h)−, where

Γ(h)+ = {γ | γ = exp(
∑

s≥0

γsz
s), with γs ∈ h for all s ≥ 0}

and
Γ(h)− = {γ | γ = exp(

∑

s<0

γsz
s), with γs ∈ h for all s < 0}.

In the case that h equals the diagonal matrices, one can take

∆(h) =



































zm1 0 . . . 0

0
. . . 0 0

... 0
. . . 0

0 . . . 0 zmk













| mi ∈ Z























If {Hσ | 1 ≤ σ ≤ m} is a basis of h, then there is for each element γ+ of Γ(h)+ an
N > ||Mz || such that

γ+ = exp(

∞
∑

i=0

m
∑

σ=1

hiσHσz
i), hiσ ∈ C,

∑

i,σ

|hiσ|N
i <∞

and if γ− ∈ Γ(h)−, then there is a M < ||Mz|| such that

γ− = exp(
∞

∑

j=1

m
∑

σ=1

hjσHσz
−j), hjσ ∈ C,

∑

j,σ

|sjσ|M
i <∞.

In other words, the t = {tiα} are the coordinates on Γ(hU )+ w.r.t. the basis {Eα} and
the s = {sjβ} are the coordinates on Γ(hL)− w.r.t. the basis {Fβ}. The next step will be
the construction of pairs of wavematrices in this analytic context.
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5 The construction of the solutions

Let g belong to GL(H). Consider the map Gg from the product of the flows Γ(hL)+ ×
∆(hL) × Γ(hU )− × ∆(hU ) to group GL(H) defined by

Gg(γ+(t),∆L, γ−(s),∆U ) = γ+(t)∆Lgγ−(s)−1∆−1
U .

Let Ω(hL, hU ) be the inverse image under Gg of the open set Ω in GL(H). For the ring
of functions R one chooses now those that are holomorphic on Ω(hL, hU ) and for the two
sets of commuting derivations of R one takes the

{∂Piα
= ∂tiα :=

∂

∂tiα
, i ≥ 0, 1 ≤ α ≤ mL}

and the

{∂Qjβ
= ∂sjβ

:=
∂

∂sjβ

, j ≥ 1, 1 ≤ β ≤ mU}.

By definition, the operator Gg(γ+(t),∆L, γ−(s),∆U ) splits for each point in Ω(hL, hU ) as

Gg(γ+(t),∆L, γ−(s),∆U ) = Φ̂(∞)(t,∆L, s,∆U )−1Φ̂(0)(t),∆L.s,∆U ),

where one operator Φ̂(∞) := Φ̂(∞)(t),∆L, s),∆U ) belongs to U− and the other one Φ̂(0) :=
Φ̂(0)(t,∆L, s,∆U ) to P . Note that if one introduces the operator

Φ
(∞)
∆L

= Φ̂(∞)∆Lγ+(t),

then its Z × Z-matrix [Φ
(∞)
∆L

] is an oscillating matrix at infinity of type δL := [∆L] and
likewise if one considers the operator

Φ
(0)
∆U

:= Φ̂(0)∆Uγ−(s),

then its matrix [Φ
(0)
δU

] is an oscillating matrix at zero of type δU := [∆U ]. Moreover one has

Φ
(∞)
∆L

g = Φ
(0)
∆U

and the same identity holds for the corresponding matrices. The present
construction works for all g in the open set Γ(hL)ΩΓ(hU ) because

Γ(hL)ΩΓ(hU ) = Γ(hL)+∆(hL)Γ(hL)−U−PΓ(hU )+Γ(hU )−∆(hU )

= Γ(hL)+∆(hL)ΩΓ(hU )−∆(hU ).

This set however does not have to equal GL(H). The final result is now

Theorem 1. 1. Let the element g belong to the open set Γ(hL)ΩΓ(hU ). Then the

pair ([Φ
(∞)
δL

], [Φ
(0)
δU

]), as constructed above, is a pair of wavematrices of the (hU , hL)-
hierarchy of type (δL, δU ). In particular, the matrices

L = [Φ̂(∞)]Λk[Φ̂(∞)]−1, Uα = [Φ̂(∞)]Eα[Φ̂(∞)]−1

M = [Φ̂(0)]Λ−k[Φ̂(0)]−1 and Vβ = [Φ̂(0)]Fβ [Φ̂(0)]−1

are a solution to the (hU , hL)-hierarchy.
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2. For each γ(L) ∈ Γ(hL)− and each γ(U) ∈ Γ(hU )+, the solutions of the (hU , hL)-
hierarchy corresponding to g and γ(L)gγ(U) are the same.

Proof. To prove the first part of the theorem, we make use of proposition 3. We begin

with the derivative of [Φ
(∞)
δL

] w.r.t. the parameter tiα

∂tiα([Φ
(∞)
δL

]) = {∂tiα([Φ̂(∞)]) + [Φ̂(∞)]ΛkiEα}δL[γ+(t)]

= {∂tiα([Φ̂(∞)])[Φ̂(∞)]−1 + LiUα}[Φ
(∞)
∆L

]

= Fiα[Φ
(∞)
∆L

]

with Fiα lower k-block triangular of level ≤ i. On the other hand one knows that

[Φ
(∞)
∆L

] = [Φ
(0)
δU

][g]−1 (5.1)

and substituting this relation gives

∂tiα([Φ
(∞)
δL

]) = ∂tiα([Φ
(0)
δU

])[g]−1

= ∂tiα([Φ̂(0)])δU [γ−(s)][g]−1

= {∂tiα([Φ̂(0)])[Φ̂(0)]−1}[Φ
(∞)
δL

].

Since ∂tiα([Φ̂(0)])[Φ̂(0)]−1 is upper k-block triangular of level ≥ 0 and [Φ
(∞)
δL

] is a generator

of M (∞), this shows that Fiα has a k-block decomposition in a finite sum of positive powers
of Λk. From the relation (5.1) follows

∂tiα([Φ
(0)
δU

]) = ∂tiα([Φ
(∞)
δL

])[g] = Fiα[Φ
(0)
δU

].

This concludes the proof that the first set of equations from proposition 3 is satisfied.

Consider now the derivative of [Φ
(0)
δU

] w.r.t. the parameter sjβ

∂sjβ
([Φ

(0)
δU

]) = {∂sjβ
([Φ̂(0)]) + [Φ̂(0)]Λ−jkFβ}δU [γ−(s)]

= {∂sjβ
([Φ̂(0)])[Φ̂(0)]]−1 +M jVβ}[Φ

(0)
δU

]

= Gjβ[Φ
(0)
δU

],

with Gjβ upper k-block triangular of level ≥ −j. By using the relation (5.1) one sees on
the other hand

∂sjβ
([Φ

(0)
δU

]) = ∂sjβ
([Φ

(∞)
δL

])[g]

= ∂sjβ
([Φ̂(∞)])δL[γ+(t)]

= {∂sjβ
([Φ̂(∞)])[Φ̂(∞)]−1}[Φ

(0)
δU

].

The matrix ∂sjβ
([Φ̂(∞)])[Φ̂(∞)]−1 is however lower k-block triangular of level < 0. Since

[Φ
(0)
δU

] is a generator of the module M (0), one may conclude now that the matrix Gjβ has

a k-block decomposition in a finite number of negative powers of Λk just as required in
proposition 3. Thus we have proved part (1) of the theorem.
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As for the second part, one has by definition the identity

Gγ(L)gγ(U)(γ+,∆L, γ−,∆U ) = γ+∆Lγ(L)gγ(U)γ−1
− ∆−1

U

= γ(L)(Φ̂(∞))−1Φ̂(0)γ(U)

and this gives directly the decomposition of Gγ(L)gγ(U)(γ+,∆L, γ−,∆U ). Hence the solu-
tions corresponding to γ(L)gγ(U) are

L = [Φ̂(∞)]γ(L)−1Λkγ(L)[Φ̂(∞)]−1 = [Φ̂(∞)]Λk[Φ̂(∞)]−1,

Uα = [Φ̂(∞)]γ(L)−1Eαγ(L)[Φ̂(∞)]−1 = [Φ̂(∞)]Eα[Φ̂(∞)]−1,

M = [Φ̂(0)]γ(U)Λ−kγ(U)−1[Φ̂(0)]−1 = [Φ̂(0)]Λ−k[Φ̂(0)]−1,

Vβ = [Φ̂(0)]γ(U)Fβγ(U)−1[Φ̂(0)]−1 = [Φ̂(0)]Fβ [Φ̂(0)]−1.

This proves the claims in part (2) of the theorem. �
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