
Improved algorithm for mining maximum frequent patterns based on FP-Tree

Naili Liu
Department of Information

Linyi University
Linyi,276005,China
lnl1999@163.com

Lei Ma
Department of Media

Linyi University
Linyi, 276005,China

Abstract—Mining association rule is an important matter in
data mining, in which mining maximum frequent patterns is a
key problem. Many of the previous algorithms mine maximum
frequent patterns by producing candidate patterns firstly, then
pruning. But the cost of producing candidate patterns is very
high, especially when there exists long patterns. In this paper,
the structure of a FP-tree is improved, we propose a fast
algorithm based on FP-Tree for mining maximum frequent
patterns, the algorithm does not produce maximum frequent
candidate patterns and is more effectively than other improved
algorithms. The new FP-Tree is a one-way tree and only
retains pointers to point its father in each node, so at least one
third of memory is saved. Experiment results show that the
algorithm is efficient and saves memory space.

Keywords- data mining;association rule;maximum frequent
pattern;FP-Tree

I. INTRODUCTION

Mining frequent patterns in transaction databases has
been studied popularly in data mining research, which
reflects interesting association or contact between itemsets
in the large amounts of data. Most of the previous studies
adopt an Apriori[1,2] algorithm which adopts candidate set
generation-and-test approach. However, candidate set
generation is still costly, especially when there exists prolic
patterns or long patterns[3,4]. J.Han put forward FP-Tree[5]
algorithm which produces frequent itemsets by frequent
patterns tree, which need not produce candidate itemsets and
only need construct FP-Tree and conditional FP-Tree,
which produces frequent patterns by visiting FP_Tree
recursively. FP-Tree algorithm accesses database only twice.
However, FP-Tree algorithm produces frequent patterns by
mining conditional patterns and conditional FP-Tree
recursively. Apriori algorithm and FP-Tree algorithm
produce all frequent itemsets, but maximum frequent
itemsets contain all frequent itemsets. So, mining frequent
itemsets can be translated into mining maximum frequent
itemsets.So,mining maximum frequent itemsets is very
important in data mining.

Most of the previous studies of mining maximum
frequent imtesets, such as Max-Miner[6],Pincer-Search[7],
IMMFIA[8], DMFI[9] and DMFIA[10] and etc. Many
improved algorithms were proposed based on these
algorithms. Max-Miner algorithm adopts an Apriori-like
approach,which is based on producing candidate itemsets
and accessing database many times. DMFI algorithm adopts

non-candidate itemsets, but still accesses database many
times. DMFIA algorithm based on FP-Tree accesses
database only twice, produces maximum frequent itemsets
by non-conditional pattern and non-conditional FP-Tree, but
still produces maximum candidate itemsets. This paper
proposes an algorithm based on FP-Tree, which improves the
structure of FP-Tree. Improved FP-Tree is a one-way tree
and has only pointers to point its parent node and has no
pointers to point its children in each node, so at least one
third memory is saved, and has maximum non-candidate
itemsets, therefore this algorithm improves the efficient of
mining maximum frequent itemsets.

II. PROBLEM DESCRIPTION

A. Frequent patterns and maximum frequent patterns

Let I ＝ {i1,i2, … , im} be a set of items, and a
transaction database D = {T1,T2, …,Tn},where Ti (1≤i≤n) is
a transaction which contains a set of items in I. For any X⊆
I, we say that a transaction T contains X if there exists X⊆T.
The set X is called an itemset. The support of an itemset X
is the proportion of transactions in D which contain X,
marked as Xsup. An itemset X is called frequent if its support
is greater than or equal to given min_sup, where min_sup is
called the minimum support.

Definition 1 Let X be an itemset, X⊆I, Xsup≥min_sup,
and any of itemset Y, if there exists X ⊂ Y and
Ysup<min_sup, then X is a maximum frequent itemset in D.

B. Frequent Pattern Tree

Each node in the FP-Tree consists of five fields:
node_name, node_count, node_fchild, node_link, and
node_parent, where node_name registers which item this
node represents, node_count registers the number of
transactions represented by the portion of the path reaching
this node, node_fchild registers the first child of this node,
labeled as “null” if this node is leaf, which removes pointer
of child node in ordinary FP-Tree , and node_link links to
the next node in the FP-tree carrying the same item_name,
or null if there is none. Each entry in the frequent-item
header table in support ascending order consists of three
fields:(1)item_name,(2)item_next and (3) head of item_head,
which points to the minimum support node in the FP-tree
carrying the item_name.

FP-Tree construction algorithm:

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0833

Input: A transaction database D and a minimum
support threshold.

Output: frequent pattern tree, FP-tree
Method: The FP-tree is constructed in the following

steps.
1. Scan the transaction database D once. Collect the set

of frequent items F and their supports. We find out the list
of frequent items LDF by sorting F in support descending
order.

2. Create the root of an FP-tree, and label it as
"null".For each transaction in D do the following:

Select and sort the frequent items in Trans according to ①
the order of LDF. Non-frequent items contained in the
transaction without any treatment, because it will not be
added to the FP-Tree. Let the sorted frequent item list in
Trans be [p|P], where p is the first element and P is the
remaining list. Call insert_tree([p|P],T). If P is ② ② non
empty, call insert_tree(P,N) recursively.The function
insert_tree([p|P],T) is performed as follows:If T has a child
N such that N.node_name=p, then increment N's count by
1;else create a new node N, and let its node_name be p and
its node_count be 1,its node_parent link be linked to T, and
its node_link be linked to the nodes with the same
node_name via the node_link structure, and then make the
following judgement: If T's node_fchild is empty, the newly
created node N's node_name is assigned to the T's
node_fchild in order to determine whether the node in the
future use of leaf nodes, if node T's node_fchild is empty, it
is the leaf node, otherwise it is not a leaf node.

III. MINING MAXIMUM FREQUENT ITEMSETS ALGORITHM

Lemma 1 If X is the maximum frequent itemset, then
any subset of X is frequent itemset, and any maximum
frequent itemset is a subset of LDF.

This lemma is obtained according to the Apriori nature.
Lemma 2 If T's node_count is greater than or equal to

minimum support min_sup, its predecessors nodes'
node_count must be greater than or equal to min_sup.

Proof: According to the structure principle of frequent
pattern tree FP-Tree, when frequent item in each transaction
(each transaction has been ranked by support descending
order) is added to the FP-Tree, the node count is increases
by 1 if there exists the same name as the node, otherwise
create a new node. Therefore, the count value of the parent
node is greater than or equal the count value of the child
node.

The basic idea of this algorithm: To find the maximum
frequent itemsets according to item linked list of elements,
linked list is established in support ascending order, so the
first consideration is minimum support frequent itemset,
each cycle do the following : identify the item you want to
deal with the same name node in the FP-Tree nd1,nd2, ...,
ndh, then find out the path p1→p2→…→ph which cantains
item according to node nd1, nd2, ..., ndh in FP-Tree, and then
process each node nd1, nd2, ...ndh, firstly, judge pi is a subset
of the elements of MFSD or not (that is, to determine
whether the pi is the element of MFSD, or whether an
element of MFSD contains the pi), if not, do the following:
①If node ndi is a leaf node, and its support is greater than

and equal to minimum support min_sup, then pi is added to
the MFSD; otherwise whether there exists the same name
node ndj, satisfies i≠j ,and ndi.node_count +
ndj.node_count≥min_sup and pj contains pi (that is, pi is a
subset of pj) ,then add pi to MFSD; If the node nd② i is not a
leaf node and its support is greater than or equal to min_sup,
then add pi to MFSD; whether there exists the same name
node ndj, satisfies i≠j ,ndi.node_count +
ndj.node_count≥min_sup and pj contains pi,then add pi to
MFSD;

Mining maximum frequent itemsets algorithm:
Input:Frequent patterns tree FP-Tree;Frequent item

link table Htable; minimum support threshold
min_sup;Frequent item list LDF

Output:Maximum frequent itemsets MFSD
Method:

MFSD= ∅ ;
p=Head;
while (p!=null)
{

find out nd1,nd2,…,ndh nodes with the same name
as p.item-name in the FP-Tree；

 find out the path p1→p2→…→ph which contains
 p.item_name according to nd1,nd2,…,ndh and

pointer domain of its prefix node's parent node
 for (i=1;i≤h;i++)

{
 if (pi is not subset of any element of MFSD)

{
 if (ndi.node_fchild=null)

{
 if (ndi.node_count≥min_sup)

{
 if pi is not subset of any element of MFSD
 MFSD=MFSD∪pi;

}
 else for (j=1;j≤h;j++)

{
 if (i ≠ j) and (ndi.node_count+

ndj.node_count≥min_sup)and(pj contains pi)
 MFSD=MFSD∪pi;

}
}

 else
 if (ndi.node_count≥min_sup)
 MFSD=MFSD∪pi;
 else for (j=1;j≤h;j++)
 if (i ≠ j) and (ndi.node_count+

ndj.node_count≥min_sup) and (pj contains pi)
 MFSD=MFSD∪pi;

}
p=p.item_next;

}
Example:Tansaction database D is shown in Figure

1,minimum support count is 2(that is,s=2/9=22%),FP-Tree
is shown in Figure 2.

TID Item
T100 a,b,e

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0834

T200 b,d
T300 b,c
T400 a,b,d
T500 a,c
T600 b,c
T700 a,c
T800 a,b,c,e
T900 a,b,c

Figure 1. transaction database D

Node storage structure is node_name, node_count,
node_fchild, node_link, node_parent,each node of FP-Tree
records node_name,node_count,node_fchild.

Figure 2. Htable and FP-Tree

First scan the database to come to frequent itemset F and
support of frequent item, and produce frequent item list LDF
in support descending order F, and establish item linked list
Htable in support ascending order of LDF, in this example, e
is first element in the list. The establishment of the FP-Tree
tree is shown in Figure 2. According to the algorithm,
assuming that when we analyze c in the project list, first find
out three nodes with the same name as c in the FP-Tree
according to node chain, respectively, and find the path
containing c p1 = {b, a, c,}, p2 = {b, c}, p3 = {a, c}, then
analyze three nodes respectively, the first node nd1=[c,2,e],
because of nd1.node_fchild = e, so this node is not a leaf
node, and that p1= {b, a, c} is not subset of some element of
MFSD = {{b,a,e}, {b, d}}, nd1.node_count = 2≥min_sup,
directly add p1 = {b,a,c} to MFSD, then MFSD = {{b,a,e},
{b,d}, {b,a,c}}, then analyze node nd2 = [c, 2, null], due to
nd2.node_fchild = null, so nd2 is a leaf node, nd2.node_count
= 2≥min_sup,however, p2 = {b, c}is subset of {b,a,c} in
MFSD, so p2 can not be added to the MFSD, then we continue
to analyze node nd3= [c,2,null], nd3 is also a leaf
node,nd3.node_count = 2≥min_sup, because p3 = {a, c} is
also subset of {b,a,c} in MFSD ,so p3 can not be added to the
MFSD. This analysis of c in project linked list is over, and we
continue to analyze other projects in the linked list until we
analyze the end of the project linked list.

IV. ALGORITHM AND COMPARE

We use Visual Basic 6.0, memory 1G, CPU Celeron
2.5GHZ, Windows 2000 Server to realize this algorithm and
DMFIA algorithm, this algorithm and DMFIA algorithm
have the same number of times to scan database, and have
the same time to establish FP-Tree because of only node

structure different each other.The difference of two
algorithms is execution time of finding maximum frequent
itemsets. The best case time complexity of this algorithm is
kh (where k is the number of frequent item, namely the
number of frequent 1 - itemsets, h is the number of nodes in
the FP-Tree and analysis frequently have the same
item_name), the worst case time complexity of this
algorithm is kh2,however, time complexity of DMFIA
algorithm is a*k*(b*h+b*c) where a registers the |MFCSD|
number in cycle, b registers the average of the number of
|MFCSi| in cycle, and c registers the average of the number
of per cycle MFCSi items,in the best case, DMFIA’s time
complexity is slightly larger than kh, in the worst case, its
time complexity is about k2h2. From the above analysis can
be drawn, this algorithm can be more effectively to find the
maximum frequent itemsets than DMFIA algorithm.
Experiment result is shown in Figure 3.

0

5

10

15

20

25

30

35

40

0.05 0.1 0.15 0.2 0.25

support

e
x
c
u
t
i
o
n

t
i
me
(
s
)

DMFIA

this algorithm

Figure 3. Experiment result

V. CONCLUSION

Finding maximum frequent patterns is one of the key
issues in the field of data mining, it is also a hot research in
data mining.In this paper an improved algorithm is presented,
the algorithm does not generate candidate itemsets, and need
not produce conditional FP-tree recursively, ant its time
complexity is relatively low in mining maximum frequent
patterns, thereby the efficiency of the algorithm is enhanced.

REFERENCES
[1] Agrawa lR, Imielinski T, Swami A. Mining association rules between

sets of items in large databases (C). In: Buneman P, Jajodia S,eds.
Proc. of the ACM SIGMOD Conf. on Management of Data
(SIGMOD’93). New York: ACM Press, 1993. 207~216.

[2] Agrawa lR, Srikant R. Fast algorithms for mining association rules in
large databases. In: Bocca JB, Jarke M, Zaniolo C, eds. Proc.of the
20th Int’l Conf. on Very Large Data Bases. Santiago: Morgan
Kaufmann, 1994. 478~499.

[3] Aly HH, Taha Y, Amr AA. Fast mining of association rules in large-
scale problems. In: Abdel-Wahab H, Jeffay K, eds. Proc. of the 6th
IEEE Symp. on Computers and Communications (ISCC 2001). New
York: IEEE Computer Society Press, 2001. 107~113.

[4] Tsai CF, Lin YC, Chen CP. A new fast algorithms for mining
association rules in large databases. In: Kamel AE, Mellouli K, Borne
P, eds. Proc. of the 2002 IEEE Int’l Conf. on Systems, Man and
Cybernetics (SMC 2002). IEEE Computer Society Press,
2002.251~256.

[5] Han J, Pei J, Yin Y. Mining frequent patterns without candidate
generation. In: Chen WD, Naughton J, Bernstein PA, eds. Proc. Of

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0835

the 2000 ACM SIGMOD Int’l Conf. on Management of Data
(SIGMOD 2000). New York: ACM Press, 2000. 1~12.

[6] Bayardo R. Efficiently mining long patterns from databases. In: Haas
LM, ed. Proceedings of the ACM SIGMOD International Conference
on Management of Data. New York: ACM Press, 1998. 85~93.

[7] Lin DI, Kedem ZM. Pincer-Search: A new algorithm for discovering
the maximum frequent set. In: Schek HJ, ed. Proceedings of the 6th
European Conference on Extending Database Technology.
Heidelberg: Springer-Verlag, 1998. 105~119.

[8] Ma Li-sheng,Yao Guang-shun.Mining algorithm for maximal
frequent itemsets based on improved FP-Tree.Journal of Computer
Application,2012,32(2):326-329.

[9] Lu SF, Lu ZD. Fast mining maximum frequent itemsets. Journal of
Software, 2001,12(2):293~297 (in Chinese with English abstract).

[10] Song Qingyu,Zhu Yuquan. An Algorithm and Its Updating Algorithm
Based on FP-Tree for Mining Maximum Frequent Itemsets.Journal of
Software, 2003,Vol14,No.9.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0836

