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Abstract—We review a recent neural implementation of 
Canonical Correlation Analysis and show, using ideas 
suggested by Ridge Regression, how to make the algorithm 
robust. The network is shown to operate on data sets which 
exhibit multicollinearity. We develop a second model which not 
only performs as well on multicollinear data but also on 
general data sets. This model allows us to vary a single 
parameter so that the network is capable of performing Partial 
Least Squares regression to Canonical Correlation Analysis 
and every intermediate operation between the two. On 
multicollinear data, the parameter setting is shown to be 
important but on more general data no particular parameter 
setting is required. Finally, we develop a second penalty term 
which acts on such data as a smoother in that the resulting 
weight vectors are much smoother and more interpretable 
than the weights without the robustification term. We illustrate 
our algorithms on both artificial and real data. 

Keywords- Canonical correlation analysis; Roughness 
penalty; Multicollinearity; Partial least squares regression 

I.  INTRODUCTION 

Canonical Correlation Analysis (CCA) is a statistical 
technique used when we have two data sets which we 
believe have some underlying correlation. Let us have 

sample vectors 1x  and 2x  drawn from two related data sets. 

Then in classical CCA, we attempt to find that linear 
combination of the variables which give us maximum 
correlation between the combinations. Let 
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Then we wish to find those values of 1w  and 2w  which 

maximize the correlation between 1y  and 2y . If the relation 

between 1y  and 2y  is believed to be causal, we may view 

the process as one of finding the best prediction of 2x  from 

the second data set by the sample, 1x  from the first data set 

and similarly of finding the best predictable criterion in the 

sample 1x  in order to predict the sample 2x . 

Now it may be shown that a method of finding the 
canonical correlation directions is to solve the generalized 
eigenvalue problem 
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where 
ij is the covariance matrix of ix  and jx . 

It has recently been shown that solutions of the 
generalized eigenvalue problem 

Aw Bwλ=                                   (2) 
can be found using gradient ascent of the form 

( )
dw

Aw f w Bw
dt

= −                         (3) 

where the function ( ) : nf w R R→ . 
Intuitively, what these criteria mean are that 
1. The function is rather smooth. 

2. It is always possible to find values of , 1,2iw i = , 

large enough so that the functions of the weights exceed the 
greatest eigenvalue. 

3. It is always possible to find values of , 1,2iw i =  

small enough so that the functions of the weights are smaller 
than the least eigenvalue. 

4. For any particular value of , 1,2iw i = , it is possible 

to multiply , 1,2iw i = , by a scalar and apply the function to 

the result to get a value greater than the greatest eigenvalue. 
5. Similarly, we can find another scalar so that, 

multiplying the iw , by this scalar and taking the function of 

the result gives us a value less than the smallest eigenvalue. 
6. The function of this product is monotonically 

increasing between the scalars defined in Eqs. (4) and (5). 
A typical example of ( )f ⋅  taken from Zhang and Leung 

(2000) would be ( ) ln( ( ) ( ))Tf w w t w t= , which we use 
for all the experiments in this paper.  

Using formulation (3) we have shown that the canonical 

correlation directions 1w  and 2w  may be found using 
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Using the fact that, for zero mean data, ( )T
i jij

E x x= , 

we derive the instantaneous versions 

1 1 2 1 1( ( ) )w x y f w x yηΔ = −  

2 2 1 2 2( ( ) )w x y f w x yηΔ = −  

which was shown to provide a family of networks capable of 

performing CCA. If we use a single pair of outputs, 1y  and 

2y  with corresponding weights, 1w  and 2w  the system of 

equations converges to the first generalized eigenvectors; if 
we wish subsequent correlation filters, we can use 
deflationary methods or other means of introducing some 
asymmetry to the learning rules. The theoretical analysis in 
Zhang and Leung (2000) shows that any function ( )f ⋅  
satisfying the above three criteria will cause convergence to 
the eigenvector with the greatest eigenvalue; we can confirm 
empirically that all functions we have used in the above 
system of equations have been successful in causing 
convergence to the canonical correlation directions. 

II. THE RIDGE MODEL 

The problem of multicollinearity arises in a regression 
problem whenever there is a linear dependency among the 

independent variables. That is, let 0 1 1( , , , )pX x x x −=   

where ix  is the 1n×  vector of responses for the thi  

variable. The independent variables are said to have linear 
dependence whenever 
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for 0jt ≠ . To solve X yβ = , the standard method is to 

multiply both sides of this equation by TX  and then solve 

for β  to give 1( )T TX X X yβ −= . If condition (4) holds 

then 1( )TX X −  does not exist. Seldom does the above linear 
dependency actually hold, rather one nearly has linear 

dependency which implies that 1( )TX X −  is ill-conditioned, 

hence any estimates using 1( )TX X −  are poor. 
Ridge regression is a popular method for dealing with 

multicollinearity within a regression model. The idea is fairly 

simple. Since the matrix TX X  is ill-conditioned or nearly 
singular one can add positive constants to the diagonal of the 
matrix and ensure that the resulting matrix is not ill-
conditioned. That is, consider the biased normal equations 
given by 

( )T TX X kI X yβ+ =                            (5) 

where I  is the identity matrix. This results in a biased 
estimate for b given by 

1( )T TX X kI X yβ −= +                            (6) 

where k  is called the shrinkage parameter. This has been 
shown to make the regression robust. 

III. APPLICATION TO CCA 

The canonical correlation coefficient is given by 
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which will clearly be difficult to calculate if the within class 
covariance matrices are singular or nearly so. Similarly, 
since the generalized eigenvectors found by solving 
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may be equally well-defined as the eigenvectors found by 
solving 
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Vinod (1976) shows that the coefficients estimated from 
the usual CCA can be very unstable when the data are non-
orthogonal, but after adding small constants to the diagonal 
of the correlation matrix of all variables before the usual 
CCA, a considerable improvement in the stability and 
reliability of regression coefficients is achieved. We also can 
consider this as kind of smoothing for the data; in Leurgans, 
Moyeed, and Silverman, a similar approach has been used to 
deal with functional data. Thus, from the above, we have 
good reasons to believe that the penalty term kI  can make 
CCA more robust. 

Now if we use 111
k I+  and 222

k I+  instead of 

11  and 
22  in our neural implementation, we get 
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    (10) 

Taking 1 2(  )T T Tw w w= , we find the canonical 

correlation directions 1w  and 2w  using 

1
2 1 1 112 11
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dw

w f w k I w
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= − +   

2
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( )( )
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w f w k I w
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We may propose the instantaneous rules 

1 1 2 1 1 1 1 1 1( ( ) ( ) )w x y f w x y f w k wηΔ = − −  

2 2 1 2 2 2 2 2 2( ( ) ( ) )w x y f w x y f w k wηΔ = − −  

This algorithm, in fact, does perform an approximation to 
CCA but we have found experimentally that it does slow 

learning. The ik  parameters are optimal when rather large 

but note that this has a detrimental effect in that it affects 
both the second term and also the first term which causes 

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France. 
© the authors 

0856



growth towards the canonical correlation vectors. To restrict 
this effect, we restructure Eq. (10) to get 
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Thus the update rule for the weights is 

1 1 2 1 1 1 1 1 1 1

2 2 1 2 2 2 2 2 2 2

( ( )(1 ) ( ) )

( ( )(1 ) ( ) )

w x y f w k x y f w k w

w x y f w k x y f w k w

η
η

Δ = − − −
Δ = − − −

(12) 

This method of weight change is the first innovation in 
this paper. We may however consider generalizing this 
method by using different bias-inducing terms. For example, 
we may wish to produce smoothly changing CCA 
parameters and so we may wish to introduce a term which 
penalizes roughness in the CCA weights. 

Functional data analysis (FDA) has been developed for 
analyzing functional data. In FDA, we treat the data as 
consisting of functions not of vectors. We take samples at 

time points 1 2, ,t t   and regard { ( ), 1, 2, }jx t j =   as 

multivariate observations. In this sense the original 

functional ( )x t  can be regarded as the limit of { ( )}jx t  as 

the sampling interval tends to zero and the dimension of 
multivariate observations tends to infinity. The central idea 
of doing FDA is using a roughness penalty to incorporate 
smoothing. The most popular measure of roughness is the 
second derivative of the function form, i.e. a measure of the 
rapidity of the variability of the function f  is given by 

2( ) ( ''( ))R f f x dx=                       (13) 

Since we do not care about the sign of the roughness, 
only its magnitude, we define a penalty for roughness by 

2 2 4
2 ( ) || || ( ) ( )PEN f D f f t D f t dt= =         (14) 

where 2D  is the second derivative operator and 4D  is the 
fourth derivative operator.  

The phrasing of the parameters in this way allows us to 
consider a family of solutions found by varying the 

magnitude of the ik  parameters. For example, if 1 2k k= =1 

in Eq. (12), we revert to Aw Bwλ= , gives us the solution 
for Partial Least Square (PLS): 
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           (15) 

The PLS regression method has been used extensively, 
specially for calibration tasks in chemometrics. 

It may be helpful to compare PLS with the CCA, which 
is an maximization of the correlation between a similar pair 
of scores. Recall that PLS maximizes covariance, not 
correlation. Interpreting the coefficients of canonical variates 
requires the usual stringent assumptions underlying multiple 

regression of either canonical variate upon the variables of 
the other block. Such assumptions are unlikely to obtain 
when predictors or outcomes are intentionally redundant. In 
contrast, by maximizing covariance between the latent 
variable scores, PLS optimizes the usefulness of the analysis 
for subsequent studies of intervention. 

IV. EXPERIMENTS 

A. Multicollinear data 

We generate two artificial datasets 1x  and 2x  

1 11 12 1 2 21 22 2( , , , ), ( , , , )n nx x x x x x x x= =   

in which we take 20n = ; each 1nx  is linear combination of 

1b  and each 2nx  is linear combination of 2b  where 

1 11 12 1 2 21 22 2( , , , ), ( , , , )p pb b b b b b b b= =   

with p=4. Now, we have two data sets, each of which has 
very high internal correlations. Now we create a strong 
correlation between the two data sets by defining 

11 21( ) / 2c x x= +                            (16) 

and then set 11 21x x c= = . Now, the first elements in both 

data sets are exactly same, and each of these new first 
elements has a high correlation with other internal elements 
and also has a correlation with elements of the other data set. 
These provide the only correlations between the two data 
sets. We use two algorithms on this data set: one is our new 
algorithm (13) with the smoothing parameter, we see that the 
existing neural algorithm has had a great deal of difficulty 
with this data set while the new algorithm (13) has identified 
the major correlations very effectively. 

TABLE I.  WEIGHTS VALUE OF THE MULTICOLLINEARITY DATA 

 Existing algorithm New algorithm 

 1 2 1 2 

1 20.6918 20.5765 21.6644 21.6222

2 20.0453 0.5527 0.0022 20.0235

3 20.8561 0.946 20.0045 0.0048

4 0.4852 20.2 0.0031 20.029

5 20.5817 20.1928 0.0016 20.0112

6 0.5947 20.0139 0.0001 0.0239

7 20.0364 0.6404 20.0039 0.0117

8 20.0373 20.1642 20.0006 20.0059

9 0.1009 20.7506 20.0022 0.0037

10 0.4595 20.2232 20.0037 0.0057

11 20.0454 0.0366 0.0042 0.0169

12 20.2113 20.1909 0.0001 20.0071

13 0.0907 0.1842 0.0022 0.0051

14 20.0137 0.3383 20.0015 0.0007

15 20.299 0.4471 0.0038 20.0059
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B. Children’s gait data 

The Children’s Gait Data has been used in Leurgans et al. 
collected by the Motion Analysis Laboratory at the 
Children’s Hospital, San Diego, CA,. The data set consist of 
the angular rotations in the sagittal plane of the hip and knee 
of 39 normal 5-year-old children. The observations are taken 
over a gait cycle consisting of one double step taken by each 
child, and time is measured in terms of the cycle which has 
been discretized to a regular grid of 20 points. 

Fig. 1 shows the results of the simulation in terms of the 
weight parameters with k=0.9 while Fig. 1 shows the results 
using a previous neural algorithm. It is clear that Fig. 1 is 
rather difficult to interpret while Fig.1 is much more 
interpretable. Also the smoothness of Fig.1 gives us 
somewhat greater confidence in the predictive power of this 
result since Fig. 1 appears to be a noisy solution. Because we 
are not interested in this specific data, we do not analyse the 
experiment’s results, but from Fig.1, we can see the hip 
curve in the middle of the cycle occurs a little later than that 
in the knee curve, which concurs with the interpretation in 
Leurgans et al. Figs.1 shows the first and second weights 
value from the algorithm with the roughness penalty 
smoothing term (11) and (14). Both the first and second 
weights’ values could be transformed roughly to being 
identical for the hip and the knee by speeding up the hip 
cycle relative to the knee cycle in the first half of the cycle 
and slowing it down in the second. Since the main interest is 
in comparing the curves, all of the weights value shown in 
Figs.s has been normalized so that the integral of their 
squares is equal to 1. 

 
Figure 1.  Canonical variate weights using New learning rule, the solid 

line for hip, dash line for knee. 

We also found experimentally that, if we use the simple 
ridge solution (11), we need to use a large k, (20–50), which 
has an adverse effect on the growth part of the algorithm and 
causes decay away from the optimal directions. The final 
result is that the estimate of canonical correlation is very 

poor. If we use the hybrid solution (13), we just need a 
number between 0 and 1. 

V. CONCLUSION 

We have used the basic idea from ridge regression to 
create an algorithm which is robust with multicollinear data. 
We have shown the effectiveness of the algorithm on 
artificial data which was designed to be multicollinear and 
on a real data set which has a limited number of samples in 
relation to its dimensionality. With a second real data set-one 
which does not exhibit multicollinearity--we have shown that 
the addition of the robustification parameter does not 
materially affect the results for a wide range of parameter 
values. 

We have introduced a penalty term which penalizes 
roughness in the canonical correlation directions and shown 
that the resulting vectors are much more interpretable than 
the original. The resulting canonical correlation vectors are 
more suited to prediction than those achieved without the 
penalty term. 

Finally, we have used lateral connections to find more 
than one canonical correlation vector. 
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