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Abstract—We propose a new self-organizing neural model that 
performs principal components analysis. It is also related to 
the adaptive subspace self-organizing map (ASSOM) network, 
but its training equations are simpler. Experimental results are 
reported, which show that the new model has better 
performance than the ASSOM network. 
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I.  INTRODUCTION 

The adaptive subspace self-organizing map (ASSOM) is 
an evolution of the self-organizing feature map (SOFM) 
proposed by Kohonen. These two networks are rooted in the 
concept of self-organization, which seems to explain several 
neural structures of the brain that perform invariant feature 
detection. The ASSOM was first presented as an invariant 
feature detector. This property has been further studied, and 
its relations with wavelets and Gabor filters have been 
reported. Furthermore, representation of observed data could 
be also achieved by using a vector basis. A probabilistic 
algorithm to learn vector basis has been given, while the 
ASSOM is an alternative for this task. 

This network is an alternative to the standard principal 
component analysis (PCA) algorithms, as it looks for the 
most relevant features of the input data. An early neural 
network approach to the PCA problem can be found in Oja. 
Self organization has been used for this task before. 
Nevertheless, the ASSOM network is a completely new tool 
for pattern recognition. In general, unsupervised networks 
can be used to solve classification and clustering problems. 
The ASSOM has been successfully applied to the 
handwritten digit recognition problem which many neural 
network researchers have addressed. Also, it has been used 
for texture segmentation. This work is related with a 
supervised variant of the ASSOM, called Supervised 
Adaptive-Subspace Self-Organizing Map (SASSOM), first 
proposed by Ruiz del Solar and Ko¨ppen. 

Finally, SOFM networks are adequate to create 
topographic maps, which are representations of the input 
space. This ability is inherited by the ASSOM network, 
which has been taken as a standard for comparison with 
other algorithms that make these maps. 

II. THE ASSOM NETWORK 

In this section we give a brief review of the original 
ASSOM. First of all, we define the orthogonal projection of 
a vector x  on an orthonormal vector basis 

{ | 1, 2, , }hB b h K= =   as 
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The vector x  can be decomposed into two vectors, the 
orthogonal projection and the projection error, by the 
equation 

ˆx x x= +                                          (2) 
Every unit (say, i) of an ASSOMnetwork has a vector 

basis, Bi: The vector bases Bi are assumed to be orthonormal. 
They are orthonormalized frequently to meet this 
requirement. The aim is to approximate x by its orthogonal 
projection on the vector basis which gives the minimum 
projection error (winning neuron). This is achieved by 
changing the basis vectors of the winning neuron. A learning 
rate controls this change. The units form a lattice, like in the 
SOFM network. Hence the neighbouring neurons of the 
winning neuron also change their basis vectors according to 
a neighbourhood function which gives the degree of vicinity. 
It is expected that this strategy achieves a topological 
ordering of the units, i.e. neighbouring neurons span similar 
subspaces. 

The input vectors are grouped into episodes in order to be 
presented to the network. So, an episode ( )S t  has many 

time instants ( )pt S t∈ , each with an input vector ( )px t . 

The set of input vectors of an episode has to be recognized as 
one class, such that any member of this set and even an 
arbitrary linear combination of them should have the same 
winning neuron. The training process has the following steps: 

(a) Winner lookup. The winning neuron c is computed 
according to this equation: 
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(b) Learning. For every sample ( )px t , ( )pt S t∈ : 
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(b.1) Basis vectors rotation. The basis vectors are 
changed to approximate the sample more accurately: 
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x t x t
b t I t h t b t
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The learning rate ( )tλ  and the neighbourhood function 

( )Ch t  may have either linear or exponential decays. 

(b.2) Dissipation. For every component i
hjb  of every 

basis vector i
hb : 

' sgn( ) max(0,| | )i i i
hj hj hjb b b ε= −                     (5) 

where 

( ) | ( ) ( 1) |i i i
hj hj hjt b t b tε ε δ= = − −                    (6) 

The dissipation parameter δ  has typically a small value. 
The dissipation step is needed to remove spurious small 
components, which may appear in the basis vectors. 

(c) Orthonormalization. Orthonormalize every basis. It is 
not needed to execute this step in every iteration. This is 
because the learning step usually gives near orthogonal 
vector bases. 

The objective function to minimize considered by 
Kohonen to obtain Eq. (4) is the average expected spatially 
weighted normalized squared projection error over the 
episodes [10]: 
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where ( )p X  is the joint probability density for the samples 

( ), ( )p px t t S t∈ , that produce the Cartesian product set X , 

and dX  means a volume differential in the Cartesian 

product space of the ( )px t . The Robbins-Monro stochastic 

approximation is used to minimize Eq. (7), which leads to Eq. 
(4). Our aim here is to propose a new model, which learns 
vector subspaces, like the ASSOM, but has a broader 
capability to represent the input distribution. 

III. THE PCASOM MODEL 

A. Neuron weights updating 

The ASSOM network stores the basis vectors in its units. 
The weight update involves a rather complicated 
transformation to obtain a vector basis that is similar to the 
older one, but closer to the present input samples. Here we 
propose an alternative way to store the information: we use 
the covariance matrix. The covariance matrix of an input 
vector x  is defined as 

[( ( ))( ( )) ]TR E x E x x E x= − −                (8) 

where ( )E ⋅  is the mathematical expectation operator and we 
suppose that all the components of x  are real random 
variables. 

If we have M  input samples, 1 2, , , Mx x x , we can 

make the following approximation: 
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Note that this is the best approximation that we can 
obtain with this information (it is an unbiased estimator with 
minimum variance). Now, if we obtain N  new input 

samples, 1 2, , ,M M M Nx x x+ + + , we may write: 

1

1
( ( ))( ( ))

M N
T

i i
i M

M x E x x E x
N

+

= +

= − −         (10) 

1
(( 1) )

1
II IR R M R NM

M N
≈ = − +

+ −
      (11) 

Both IR  and IIR  are approximations of R , but IIR  is 
more accurate because it takes into account the N M+  
input samples. Eq. (11) is a method to accumulate the new 
information to the old information. Now we need to 
approximate the expectation of the input vector ( )E x .  

Every processing unit of our model stores 
approximations to the matrix R  and the vector ( )E x . They 
will use the above algorithm to update these approximations. 

So, in the time instant t  the unit i  stores the matrix ( )iR t  

and the vector ( )ie t . 

B. Competition among neurons 

When an input sample is presented to a self-organizing 
map, a competition is hold among the neurons. Here we use 
an adaptation of the ASSOM approach. Remember that the 
orthogonal projection of a vector x  on an orthonormal 

vector basis { | 1, 2, , }hB b h K= =   is given by Eq. (1). 

The vector x  can be decomposed in two vectors, the 
orthogonal projection and the projection error, by the Eq. (2). 

Every unit (say, i) of our network has an associated 

vector basis ( )iB t  at every time instant t: It is formed by 
the K eigenvectors corresponding to the K largest 

eigenvalues of ( )iR t  . This is rooted in the principal 

components analysis (PCA). Note that ( )iB t  must be 
orthonormalized in order to the system to operate correctly. 

The difference among input vectors ( ), 1,2, ,ix t i N=   
and estimated means are projected onto the vector bases of 
all the neurons. The neuron c that has the minimum sum of 
projection errors is the winner. 

2
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c x t e t Orth x t B t
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where Orth ( , )x B  is the orthogonal projection of vector x  

on basis B . So, we are looking for the neuron which best 

represents the inputs ( )ix t .  
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C. Network topology 

We consider a topology that defines which neurons are 
neighbors. This means that our model is a computational 
map. Typically the neurons form a rectangular lattice. When 
a neuron c wins the competition it is updated. Its neighbors 
are also updated, according to the degree of neighborhood 

icπ  between winning neuron c  and its neighbor i : 

2
,

2
( ) exp

2 ( )
i c

ic

d
t

t
π

σ
 

= −  
 

                    (13) 

In Eq. (13), ,j id  is the distance between winning neuron 

i  and neuron j ; and jiπ  is a unimodal function of the 

lateral distance ijd , called neighborhood function, with 

( ) 0tσ →  as t → ∞ . The value ( )tσ  controls the 
neighborhood size. 

The degree of neighborhood and the learning rate are 
combined to control the updating of the neurons. For every 
neuron i  we have 

1

1
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i i e ic i i
i

e t e t t t x e t
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η π
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*( 1) ( ) ( ) ( )( ( 1) ( ))i i R ic i iR t R t t t R t R tη π+ = + + −    (16) 

The learning process is divided into two phases, like the 
standard self-organizing map algorithms: the ordering phase 
and the convergence phase. It is during the ordering phase 
when the topological ordering of the neurons takes place.  

The convergence phase is required principally for the 
fine-tuning of the computational map. The learning rate is 
maintained at a small, constant value during this phase. 

IV. COMPUTATIONAL EXPERIMENTS 

A. Convergence speed experiment 

First we have considered the following architecture: a 
6 6×  lattice with two basis vectors in each neuron. We have 

trained this network to adapt to three subspaces of 10R , each 
of dimension two. Our goal has been to measure the 
convergence speed and the final projection error obtained 
with the ASSOM and the PCASOM. For every episode of 
the ASSOM, we select randomly one of the three subspaces, 
and then build 20 samples, which belong to this subspace. 
The samples have been built by multiplying each of the two 
basis vectors of the subspace by a random quantity in the 
open interval (0,1). For PCASOM, we build the samples in 
the same way, but without grouping them in episodes. In 
order to make a useful comparison, we choose the same 
parameters for both models (when possible). Hence, both the 
ordering phase and the convergence phase take one half of 
the episodes. The neighborhood function has been always a 
Gaussian with linear decay rate in the ordering phase (with 

the neighborhood width s ranging from 4σ =  to 0σ ≅ ). 
In the convergence phase we fix 0.04σ = . For the 
ASSOM model we used a initial learning rate (0) 0.5λ = , 

and a dissipation parameter 0.2δ = . For the PCASOM 

model we used initial learning rates 1eη =  and 1Rη = . 

We have selected a performance measure of that is 
invariant to scalings, rotations and translations of the input 
data. The relative error for an input vector x  is defined as 

min || ||
( )

|| ||

i

i
x

E x
xτ =


                        (17) 

where the index i runs over all the units of the network, i.e. 
the projection error norm for the winning neuron, divided by 
the norm of the input vector. We select this criterion because 
the winning neuron has the best approximation to the input 
vector x of the network. Thus, the different algorithms are 
compared with this measure. 

We have run 30000 iterations of the ASSOM and 20000 
iterations of PCASOM. The result can be seen in Fig. 1. 

 
Figure 1.  ASSOM vs. PCASOM. 

B. Separation capability experiment 

As we have said, the PCASOM model has the capability 
to separate clusters which have the same orientation, but 
different centroids. We have selected some distributions to 
demonstrate this ability. 

In order to be able to plot the results, which can be seen 
in Figs.1, we have used K=1,D=2, as in the previous 
discussion of the differences between the classic PCA and 
the PCASOM. We have used mixtures of several Gaussian 
distributions. 

In all the cases we have obtained 500 samples from every 
Gaussian distribution, i.e. every cluster has 500 samples. 
These clusters have been selected so that the orientation of  
some of them is the same. Furthermore, some of the clusters 
are very close. In fact, there are a few cases of non-separable 
clusters. We have used elongated clusters so that the neurons 
could learn their directions. There are clusters with different 
elongations in the same distribution. The clusters have been 
marked with gray ellipses. Please note that the used Gaussian 
distributions do not end sharply, unlike the ellipses plotted. 

We have run 20000 iterations with each distribution. We 
have used only one sample per episode, i.e. there has not 
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been any grouping by episodes. The parameter selection has 
been the same as the previous experiment. 

We have used four neurons in all the networks, so that 
the number of units matches the number of clusters, and only 
one basis vector per neuron. As we can see, every neuron 
finds a cluster, with its estimated mean in the centroid of the 
cluster (marked with ‘o’), and the principal component 
direction along the orientation of the cluster (marked with a 
straight line). 

C. UCI benchmark databases experiment 

Our final set of experiments is devoted to the comparison 
of the ability to adapt to complex multidimensional data of 
the ASSOM and the PCASOM. We have used some 
classification tasks for this purpose. Several standard 
benchmark databases have been selected from the UCI 
Repository of Machine Learning Databases and Domain 
Theories (Murphy, 2001). 

The experiments with the ‘Supervised’ title (Tables 1) 
have been designed as follows. First, the training subset has 
been split by classes. Then the samples of each class have 
been presented to a different network for training, i.e. we 
have one network per class. Finally, after the networks have 
been trained, the samples of the test set have been presented 
to all the networks, one by one. The network which had the 
neuron with the less projection error has been declared as the 
winning network. If the winning network corresponds with 
the class of the test sample, we count it as a successful 
classification. 

We have use the same network architecture with both 
ASSOM and PCASOM: a 4 4×  rectangular lattice, with 
two basis vectors per neuron. The neighbourhood function 
has been always a Gaussian. We have selected a linear decay 
rate of the neighbourhood width σ  in the ordering phase. In 
the convergence phase we fix 0.04σ = . 

The parameters of both models have been optimized in 
order to make a useful comparison. The optimal values for 
the parameters that we have used have been the following. 
For the ASSOM model: initial learning rate (0) 0.45λ = , 

initial neighbourhood width (0) 4σ = , dissipation 

parameter 0.2δ = . 
The optimal values for the parameters that we have used 

have been the following. For the ASSOM model: initial 
learning rate (0) 0.45λ = , initial neighbourhood width 

(0) 4σ = , dissipation parameter 0.2δ = . 
We can see that the PCASOM model outperforms 

ASSOM in the Glass database (with supervised learning) and 
in the BalanceScale, Ionosphere, Segmentation and Yeast 
databases (with non-supervised learning). It must be noted 
that these results are achieved even with 20000 epochs, when 
the computational effort is much less than ASSOM. 

TABLE I.  CLASSIFICATION PERFORMANCE RESULTS (SUPERVISED 
LEARNING) 

Episodes ASSOM (%)  PCASOM (%) 

episode size 
10000×

10 
20000×

20 
 

20000×
1 

60000×
1 

BalanceScale       88.46 90.06  68.27 68.97 

Contraceptive      57.14 60.41  59.05 58.64 

Glass              15.24 25.71  40.84 40.95 

Haberman           78.95 81.58  17.76 65.79 

Ionosphere         39.89 40.11  28.57 27.43 

PimaIndians 72.14 37.76  68.49 67.71 

Segmentation       87.62 94.29  48.23 87.62 

Yeast              10.38 11.49  11.59 11.83 

V. CONCLUSIONS 

We have proposed a new self-organizing neural model 
that performs PCA. It is also related to the ASSOM network, 
but its training equations are much simpler, and its input 
representation capability is broader. Furthermore, the 
grouping of the input samples into episodes is no longer 
needed. Experimental results have been reported, with an 
application to classification. A performance measure has 
been defined in order to make meaningful comparisons. 
Experiments show that the new model has better 
performance than the ASSOM network with less 
computations in a number of benchmark problems. 

ACKNOWLEDGMENT 

The work was supported by Guangxi department of 
education scientific research project under Grand No. 
201204LX083. 

REFERENCES 
[1] De Sa, V. R., and Ballard, D. H.. Category learning through, 

multimodality sensing. Neural Computation, 1998, 10(5), 1097–1117. 

[2] Fleuret, F., and Brunet, E.. DEA: an architecture for goal planning 
and classification. Neural Computation, 2000, 12(9), 1987–2008. 

[3] Friedman, J. H.. Exploratory projection pursuit. Journal of American 
Statistical Association, 1987, 82(397), 249–266. 

[4] Fukushima, K.. Self-organization of shift-invariant receptive fields. 
Neural Networks, 1999, 12(6), 791–802. 

[5] Higuchi, I., and Eguchi, S.. The influence function of principal 
component analysis by self-organizing rule. Neural Computation, 
1998, 10(6), 1435–1444. 

[6] Hyvarinen, A.. Survey on independent component analysis. Neural 
Computing Surveys, 1999, 2, 94–128. 

[7] Kohonen, T.. The self-organizing map. Proceedings of the IEEE, 
1990, 8, 1464–1480. 

[8] Kohonen, T.. Emergence of invariant-feature detectors in the 
adaptive-subspace SOM. Biological Cybernetics, 1996, 75, 281–291. 

[9] Kohonen, T., Kaski, S., and Lappalainen, H.. Self-organized 
formation of various invariant-feature filters in the adaptive-subspace 
SOM. Neural Computation, 1997, 9(6), 1321–1344. 

[10] Lewicki, M. S., and Sejnowski, T. J.. Learning overcomplete 
representations. Neural Computation, 2000, 12(2), 337–365. 

 

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France. 
© the authors 

0862




