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Abstract—Particle filter is introduced. Since the particle filter 
would bring hard computation, a new Kalman/Particle mixed 
filter used on SINS/GPS integrated navigation system was 
proposed. The new method divides the system into two sub-
models, one is linear, the other one is nonlinear, and then 
implement Kalman filter and particle filter separately. The 
simulation results show that their performance is almost equal, 
but the computation complexity of the Kalman/particle filter is 
much lower than traditional particle filter. 
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I.  INTRODUCTION  

During warfare, the start-up time of navigation system 
needs to become less and less. The complicated environment, 
such as electronic interference, and instable GPS signal, is 
also needed to be overcome. To SINS/GPS integrated 
navigation system, when the SINS system starts, the azimuth 
error margin is big, and the non-linear factor during 
navigating can not be neglected. Furthermore, when the 
navigation equipment works in complicated environment, the 
noise model can not be made certain.。 

As the calculation speed is quickening, and the memory 
cost reducing, a new non-parameter modeling particle filter 
based on Bayes theorem is being attention gradually[1]. 
Particle Filter is put forward by Gordon and Salmond at 1993. 
The optimal solution of Physical model can be obtained via 
this method. And the filter can be applied to non-linear and 
non-Gaussian noise system. Much attention is also paid to 
this method in integrated navigation system[2,3]. To the 
ordinary Particle Filter algorithm, when the number of 
particle is tended to endless, particle distribution is 
constringency to real posterior probability density. When the 
number of particle is large, the calculation burden of 
ordinary particle filter algorithm aggravates. Therefore, when 
the number of state parameter is larger, the particle filter 
algorithm will be more complicated. 

Considering the characteristic of particle filter algorithm 
and Kalman filter algorithm, a new Kalman/Particle mixed 
filter used on SINS/GPS integrated navigation system was 
proposed. The new method divides the system into two sub-
models, one is linear, the other one is nonlinear, and then 
implement Kalman filter and particle filter separately. This 
method can make the best use of dynamic properties of 

system. Further more, the state dimension of particle filter 
can be reduced, so that the dimension disaster would be 
avoided. With the large misalignment SINS error for model, 
we use the two filter method to simulate the SINS/GPS 
integrated navigation system. The simulation results show 
that, in the circumstances of the large misalignment angle, 
the Kalman/Particle mixed filter performs as well as the 
particle filter, but it is briefer in computation than particle 
filter. 

 

II. PARTICLE FILTER ALGORITHM  

A.  Non-linear and Non-Gaussian System Model 

Non-linear and non-Gaussian system can be described by 
the following dynamic state space model:  
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Based on the measurement data alignment, we use 
Bayesian estimation algorithm to estimate the conditional 
posterior probability distribution ( )
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the initial marginal probability distributions. Here, we 
suppose that the initial marginal probability distribution 
function of the system state is ( ) ( )
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the posterior probability distribution of system state from 

Bayesian recursive formula and new measurement result k
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like this: 
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B.  Particle Filter Algorithm 

The PF is a recursive estimation method using Monte 
Carlo simulation within a Bayesian framework (Farina and 
Ristic, 2002; Arulampalam et a1., 2002). The central idea is 
to obtain the MMSE minimum mean-square error) of state 
from a set of random samples (particles) of state space to 
approximate the required probability density function (PDF). 
It is often impossible to directly sample from the posterior 
probability density ． Thus ， an importance proposal 
distribution, ( )0 1:k :kq x z , with identical distribution, to the 

posterior distribution is introduced, where 1:Kz are all 

measurements from t=0 to t=k. The bootstrap filter (Gordon 
et a1., 1993) simply takes the prior distribution as the 
proposal distribution by 

   ( ) ( ) ( )( )0 1 1 1 1
i i i i i
k :k :k k k k kq x x ,z p x x N f x ,Q− − −= ≈      (6) 

in calculating the importance weights[4]. However ，  it 
would cause a larger error if there is little overlap between 
prior and the likelihood. To obtain more accurate proposal 
distribution within the particle filter flame, it may be used to 
update the mean and covariance of the Gaussian 
approximation to the state distribution given by 

( ) ( )0: 1 1: 1ˆ, , , 1, , ,i i i i i
k k k k k k kq x x z N x x P i N− −= =              (7) 

where N is the number of sampling particles[5]. So the PF 
can be derived (van der Merwe et a1., 2000). For 
completeness one cycle of the PF algorithm can be 
described in detail as follows： 
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(4) Let k=k+1, and return to the (2).  
Wherever Times is specified, Times Roman or Times 

New Roman may be used. If neither is available on your 
word processor, please use the font closest in appearance to 
Times. Avoid using bit-mapped fonts if possible. True-Type 
1 or Open Type fonts are preferred. Please embed symbol 
fonts, as well, for math, etc. 

III. KALMAN /PARTICLE FILTER ALGORITHM  

The dimensional state vector of dynamic model is 
divided into two sub-models, [ ]TnT

k

lT

k
xx  is linear, and n

k

l

k
xx ,  

is nonlinear. Then Kalman filter and particle filter are 
implemented separately. 

The error model state vector of SINS can be 
described like this: 
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And then: 
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The error model and observation model equation of 
SINS is: 
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After state decomposition, based on the Bayesian, we 
know that: 
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From (2.1), we find that: 
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where ( )
k

l
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 is estimated by Kalman filter, and 
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k
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,  is estimated by Particle filter.  

The Kalman/ Particle filter described in detail as follows： 
    (1) Initialization. We suppose that ( )n
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known. To the linear model Eq(9) and Eq(10), 
initialize l
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px , . To the non-linear model Eq(11)and(14), 
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(2) Update the measurement of Kalman filter: ( )l
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    (3) Update the time of Particle filter.  
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(5) Particle filter resampling 
Calculate the number of efficient samples
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(7) Let k=k+1, and return to (2). 
 

IV. SIMULATIONS  

The dimensional state vector of the system is 
[ ]T

bzbybxbybxUNENvEk
vLx ωωωφφφδδδλδ ∇∇= . System noise 

and measurement noise are all Gaussian white noise. The 
latitude of initial position is 32°, and the longitude is 118°. 

0
b

=∇ . The constant drift of the accelerometer is 3×10 3g. 

The white noise is 3×10 3g. 0
b

=ω . The constant drift of the 

gyroscope is 0.3°/h, and the white noise is 0.1°/h. The initial 
azimuth misalignment angle is 10°, and the initial horizontal 
misalignment angle is 0.1°. The mean square error of 
position measurement noise is 3m. The mean square error of 
velocity measurement noise is 0.03m /s. Under dynamic 
environment, the carrier is in uniform velocity rectilinear 
motion, and its speed is 20m/s, azimuth angle is 45°, the 
time of simulation is 800m. We implement PF and K/PF 
separately to simulate. Fig1 to Fig7 display the error curve 
of PF and K/PF. 

From Fig1, Fig2 and Fig3, it shows that, in the 
circumstances of the large misalignment angle, PF and K/PF 
are similar in the convergence rates of course and attitude 
error are the same. However, the PF is more accurate than 
K/PF in the estimation of course angle and attitude angle. 
The velocity error and position error can be measured 
directly, and the two methods are the same in estimation 
accuracy. 

The state dimensions of PF is 12, it is 3 for K/PF. The 
numbers of particle are 10000 and 600 separately. It takes 
389.27s to iterative 800 times for PF, and it is 5.07s for 

K/PF. From the analysis above, the time the PF consumes is 
75.8 times more than the K/PF consumes. From these 
simulation results, it can be seen that, the K/PF are better 
than PF in the adaptability, the accuracy and the time. 

 

 
Figure 1.  Course angle error 
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Figure 2.  Elevation angle error 

 
Figure 3.  Roll angle error 

 
Figure 4.  East velocity error 

 
Figure 5.  North velocity error 
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Figure 6.  Latitude error 

 
Figure 7.  Longitude error 

V. CONCLUSION  

Particle filter is introduced. According to the Rao-
Blackwellization theorem and the dynastic error model, a 
new Kalman/Particle mixed filter used on SINS/GPS 
integrated navigation system was proposed. The new method 
divides the system into two sub-models, one is linear, the 
other one is nonlinear, and then implement Kalman filter and 
particle filter separately. From the simulation results, it can 
be seen that, the K/PF are better in the adaptability, the 
accuracy and the time.  
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