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Abstract—Fast and accurate visual tracking of ground 
buildings can provide unmanned aerial vehicles (UAVs) with 
rich perceptual information, which is very important for target 
recognition, navigation and system control. However, when an 
UAV moves fast, both background and buildings in visual 
scenes change relatively and rapidly. Consequently, there are 
no constant features for objects' appearance, which poses great 
challenges for visual tracking of buildings. In this paper, we 
first build an image manifold of buildings, which can encode 
the continuous variation of appearance. We then propose an 
efficient approach to learn this manifold and obtain more 
robust feature extraction results. By using a simple tracking 
framework, we successfully apply the extracted low-
dimensional features to real-time building tracking. 
Experimental results demonstrate the effectiveness of the 
proposed method. 

Keywords-manifold learning; dynamic visual tracking; 
unmanned aerial vehicles. 

I. INTRODUCTION 

Along with the advances of technology, vision system 
has become one of the most important approaches to 
perceive external environments for unmanned aerial vehicles 
(UAVs). In dynamic visual perception, dynamic visual 
tracking plays an important role in providing an UAV with 
perceptual information. On one hand, visual tracking is not 
affected by terrain or electromagnetic conditions, hence it 
can be implemented at any time. On the other hand, efficient 
visual tracking can promote the understanding of objects' 
motion, which is crucial to subsequent system control and 
route design. 

So far, various visual tracking methods have been 
proposed for UAVs. Current methods are mainly based on 
pattern recognition or computer vision approaches for static 
video surveillance. Few of them have considered the specific 
feature of dynamic tracking, that is, difficulties caused by the 
motion of the system itself. When the system moves, both 
dynamic and static objects in environment move relatively 
over time, and the change of objects' appearance would be 
great if the motion of system is fast. Therefore, there are no 
constant features for the tracked objects, and tracking 
methods based on physical or image features would fail. 

In this paper, we address the issue of ground building 
tracking for UAVs, which is a typical task in urban 
environment or natural disaster site. In such circumstances, 
vision system mounted on an UAV needs to accurately and 
rapidly track the target building. Based on our previous 

works [1][2], we propose an efficient and robust building 
tracking method by learning an image manifold. We first 
construct a manifold of building images, which encodes the 
continuous change of buildings' appearance. Then we 
introduce a new approach to learn this manifold and extract 
intrinsic and low-dimensional tracking features, which is 
more robust to the scale change of buildings in a vision 
system. Finally, we implement extracted features to a simple 
tracking framework and achieve real-time and stable tracking 
of ground buildings from a fast moving UAV. 

The rest parts of the paper are organized as follows. 
Section II reviews related works in the literature. Section III 
states details of the proposed tracking method. Section IV 
presents the experimental results. Section V concludes the 
paper. 

II. RELATED WORK 

The work in this paper is related to two aspects: one is 
manifold learning, and the other is visual tracking for UAVs. 
Related works in these two aspects are reviewed respectively. 

The goal of manifold learning methods is to extract 
intrinsic degrees of freedom underlying high-dimensional 
inputs which lie on or close to a low-dimensional manifold. 
They have drawn great research interests since proposed, due 
to their intuitive motivation and simple implementation. 
Representative methods include locally linear embedding 
(LLE) [3], Laplacian eigenmap (LE) [4], locality preserving 
projections (LPP) [5], and isometric feature mapping 
(ISOMAP) [6], to name just a few. Recently, manifold 
learning has been applied to visual tracking and proved to be 
efficient in extracting intrinsic motion variables of tracked 
objects, such as head tracking [1], [2] and body tracking [7]. 
Nevertheless, few works have been done on applying 
manifold learning to building tracking for UAVs. Although a 
strategy was proposed in our previous work [2], it does not 
work well if the scales of a building in successive images 
change greatly while tracking. 

As to visual tracking for UAVs, Campbell and Whitacre 
[8] proposed an air-ground target tracking method for UAVs. 
Koch [9] used random matrices to describe objects’ states for 
air-ground target tracking. Dobrokhodov et al. [10] proposed 
an object tracking system for unmanned small aircrafts. Zhu 
and Wang [11] used a bang-bang heading rate controller to 
achieve circular tracking around the target. Wang et al. [12] 
presented a compound framework for moving target 
detection, recognition and tracking based on different 
altitude UAV captured videos. Zhao et al. [13] proposed an 
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interacting multiple model Kalman filter for tracking ground 
moving targets. Current methods are mainly based on 
physical or image features. Few of them use the intrinsic 
degrees of freedom underlying objects’ appearance for 
ground building tracking. 

 

III. THE TRACKING METHOD 

A. Manifold Building Process 

In this paper, we assume that the change of buildings' 
appearance in successive frames is continuous and can be 
parameterized by two intrinsic degrees of freedom, that is, 
the motion of the vision system and the differences between 
buildings' appearance. Then image sequences of different 
buildings are collected, which are recorded by visual 
cameras mounted on an UAV. Some of the training images 
are shown in Fig. 1. 

Let Q = {Q1, Q2, … , QK} in Rn be the set of K sequences 
of building images. Q contains two subsets QL and QR, which 
include images of buildings on the left-hand side and right-
hand side to the vision system, respectively. Each Qi contains 
ik input samples {xi1, xi2, … , xik}, which are arranged by time 
order in the sequence. 

For any two sequences Qi and Qj (i, j = 1, 2, … , K), the 
distance between them is defined as d(Qi, Qj) = (h(Qi, Qj) + 
h(Qj, Qi)) / 2, where h(Qi, Qj) is the median Hausdorff 
distance and given by 

h(Qi, Qj) = medianl ( minh || xil - xjh || ) . 
Then the adjacency relationship among input samples is 

defined by the following principles. 
(a) In each sequence Qi, xij is adjacent to xij+1, j = 1, 2, … , 

k-1. The edge length between xij and xij+1 is set to be c0 
where c0 is a constant. 

(b) For any two sequences Qi and Qj in QL (or QR), if d(Qi, 
Qj) < ∗, then only xi1 , x[ik/2], and xik are adjacent to xj1 , 
x[jk/2], and xjk respectively, where [·] is the integral part 
of a real number and ∗ is a given threshold. This is 
because numbers of samples in Qi and Qj are not equal. 
The edge length between these adjacent samples is set 
to be d(Qi, Qj) / ∀ where ∀ is a scaling factor. 

(c) Let Qi
*∈QL and Qj

*∈QR be the two sequences which 
have the smallest distance between sequences in QL and 
sequences in Q, respectively. Then only xi1

* , x[ik/2]
*, and 

xik
* are adjacent to xj1

* , x[jk/2]
*, and xjk

* respectively. The 
edge length between these adjacent samples is set to be 
d(Qi

*, Qj
*) / ∃ where ∃ is a scaling factor. 

 
 
An intuitive illustration of the manifold building process is 
shown in Fig. 2. 

With adjacency defined as above, a connected graph is 
built up among all input samples. We define that xi and xj are 
connected if there exists a path between them. In general, the 
distance dij between xi and xj is the shortest path length 
between them if they are connected and infinity otherwise. 

The similarity Sij between two inputs is defined as 

{ }
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≠−

=
ij

ijij
ij d
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where Φ is a scaling factor and is set manually. Then the 
continuity of intrinsic degrees of freedom is encoded by 
pairwise similarities. 

B. Manifold Learning and Feature Extraction Process 

The manifold learning process has two goals: first, to 
compute a set of low-dimensional representations Y = {y1, 
y2, … , yN} in Rm, which can best preserve pairwise 
similarities {Sij}; second, to compute a mapping relationship 
from high-dimensional image space to low-dimensional 
feature space. In our previous work [2], we used LPP [5] to 
achieve this goal. However, it does not work well if the scale 
of buildings in visiual scenes changes greatly. In this paper, 
we switch to Orthogonal Locality Preserving Projections 
(OLPP) [14], since it is more stable and has more locality 
preserving power than LPP. 

In OLPP, it is assumed that there exists an n by m 
projection matrix A = [a1 a2 … am] such that for any xi, i = 1, 
2, … , N, its low-dimensional representation yi satisfies yi = 
ATxi. Here ai stands for the i-th column vector of A. Then 
pairwise similarities are best preserved by solving the 
following optimization problem. 
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where ∗ij equals to 1 if i = j and 0 otherwise. 
Let X and Y be corresponding data matrices whose 

columns are data vectors. Substituting the projection 

Figure 1.  Part of collected training samples. 

Figure 2.  Illustration of the constructed manifold. 
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assumption into (1) and adding a non-degenerate constraint, 
Equation (1) is transformed into 

( )

m
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m
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 , 

where L = D - S with S = (Sij) and D is a diagonal matrix with 
Dii = ∑j Sij, i = 1, 2, …, N. 

Let A(k-1) = [a1 a2 … ak-1] and B(k-1) = [A(k-1)]T(XDXT)-1A(k-1), 
k = 2, 3, … , m, then orthogonal vectors {a1, a2, … , am} are 
computed by the following process. 

 
 a1 is the eigenvector of (XDXT)-1XLXT corresponding to 

the smallest eigenvalue. 
 ak (k = 2, 3, … , m) is the eigenvector of M(k) = {I - 

(XDXT)-1A(k-1)[B(k-1)]-1[A(k-1)]T}(XDXT)-1XLXT 
corresponding to the smallest eigenvalue of M(k). 

The manifold learning result is shown in Fig. 3, where 
one sequence of building images are shown with red lines 
connecting adjacent samples. It can be seen that the 
continuous change of building scale and appearance are 
preserved. 

C. Visual Tracking Process 

The key problem in tracking is to determine where the 
object should be in the next frame according to current and 
previous states of the object. Let (Ox

t, O
y
t) be the coordinates 

of the center of the detection window in Frame t. Then in 
Frame t + 1, positions of candidate windows are acquired by 
increasing/decreasing (Ox

t, O
y
t) with equal intervals. 

Assume that It is the detected object image from Frame t 
and that Ic

t+1 is a candidate object image from Frame t + 1. 
Then their low-dimensional representations are computed as 
follows: 

c
t

Tc
t

t
T

t

IAy

IAy

11 ++ =

=
 . 

In Frame t + 1, the image which has the shortest distance to It 
in the low-dimensional space is considered as the optimal 
object image. 

IV. EXPERIMENTAL RESULTS 

In this section, we apply the proposed tracking method to 
building tracking missions on an UAV. We conduct two 
experiments to demonstrate the validity of extracted features. 
In both experiments, the feature dimension is 9 and   Φ = 1, 
under which tracking results are the most stable. 

In the first experiment, the vision system needs to track a 
distant building while rapidly flying over an overpass. There 
are many similar buildings close to the target one, which 
may interfere in the tracking process. Experimental results 
are shown in Fig. 4. The proposed tracking method has 
successfully tracked the building during the whole process. 

In the second experiment, the proposed tracking method 
is used to track a static building while an UAV flies over an 
avenue in high speed. The main challenges consist of great 
changes of both the relative scale/position of building with 
respect to the camera and the appearance of building. 
Experimental results are shown in Fig. 5. The proposed 
tracking method has successfully tracked the building during 
the whole process. 

V. CONCLUSION 

In this paper, we proposed an efficient ground building 
tracking method for unmanned aerial vehicles (UAVs) based 
on image manifold learning. We built a low-dimensional 
manifold which encodes the intrinsic degrees of freedom of 
buildings' appearance. We introduced a more stable approach 
to learn this manifold and extracted tracking features that are 
robust to scale changes of buildings. We successfully applied 
the extracted features to ground building tracking tasks, 
which were validated by challenging experiments. 
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Figure 4.  Building tracking results (white box) with the proposed new tracking method. The UAV rapidly flies over an overpass. 

 

Figure 5.  Building tracking results (white box) with the proposed new tracking method. The size of building’s appearance changes rapidly in the camera. 
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