
Mobile Big Data Query Based on Double R-tree and Double Indexing

Liang Ye
Department of Computer Science

Beijing Foreign Studies University
Beijing, China

E-mail: liang_ye@sohu.com

Abstract—The amount of data in our industry and the world is
exploding. Data is being collected and stored at unprecedented
rates. The challenge is not only to store and manage the vast
volume of data, which is also called big data, but also to
analyze and query from it. In order to put forward the
universal method to response mobile big data query, queries
are separated and grouped according to kinds of query for
massive mobile objects in the space. The indexing method for
grouping the mobile objects with Grid (GG TPR-tree) has
great efficiency to manage a massive capacity of mobile objects
within a limited area, but it only could meet a part of
requirements for mobile big data query if the GG TPR-tree
was used solely. This thesis offers solutions to simple
immediate query, simple continuous query, active window
query, and continuous window query, dynamic condition
query and other query requests by employing DTDI index
structure. The experiments prove that with the support of
DTDI index structure, query of massive mobile objects has
higher precision and better query performance.

Keywords-mobile query, big data, double R-tree and double
indexing

I. INTRODUCTION

The mobile objects query usually deals with the massive
mobile objects’ data sets that their locations change all the
time and the query itself is also dynamic. [1] In order to meet
the forecast query request that facing the mobile objects, in
recent years, researchers propose a variety of mobile objects
index structure and its query algorithms. [2, 3, 4, 5] The
representatives are the grid dividing method and the query
method based on PRA-tree index structure.

Giving that the users concerns more about the query’s
response speed in some cases and allow certain error in the
query results, Jimeng Sun[6] et al proposed a grid based on
the two-dimensional space dividing. The mobile objects
update their positions in the way of data stream and the grid
saves the mobile objects’ information collection that fall in it.
They use statistical and sampling method to do the
approximate query. This method can respond to the real-time
query in a moment of the history, current and future and can
not respond to the continuous query and the window query.

In order to meet all kinds of forecast query quest that
facing the mobile objects, establishing an efficient mobile
objects index structure is a necessity. In 2000, Simonas
Saltenis[7] et al proposed TPR-tree index structure to meet
the forecast query request; however, it contains the problem
that the index performance declined rapidly with time in the
process of indexing. Therefore, many domestic scholars have

proposed a variety of improved methods. Among those
methods, PRA-tree (predictive range aggregate) index
structure and its query method is the most effective one
which is proposed by Liao Wei et al in 2007, National
Defense Technology University. [8] Its idea is that while
indexing the mobile objects, firstly, it divides the velocity
field into many velocity barrels with same speed taking the
maximum and minimum values of the mobile objects’ speed
as the extreme points in the indexing group. And then map
the objects into different velocity barrels according to the
size of the velocity vector in this velocity field. At last,
indexing the mobile objects in every velocity could barrel
with the existing TPR-tree.

II. QUERY THOUGHTS BASED ON THE DIDI

STRUCTURE

In most cases, the quantity of the massive mobile objects
is much larger than that of the roads, and the establishment
of GG TPR-tree makes it possible to manage the massive
mobile objects overall. To complete the high efficient query
to the various requirements under the guidance of the space
partitioning tree, we preserve the original establishment
thoughts of the GG TPR-tree and adjust the definition of GG
TPR-tree’s leaf node as follows:

We propose Rate Accumulation Model: the massive
mobile objects go into the grid when t=0, the mobile object’s
mobile rate accumulation scalar value in the road of the grid
is:

() ()
==

×=
T

t

T

t
t tvtv

11

/~
 （1）

The Quintuples records of GG TPR-tree leaf nodes are

changed into <grid, objectsptr , MBR, Groopv~ , parentptr >,

respectively representing the grid that this group of massive
mobile objects belong to, the pointer pointed to the massive
mobile objects queue, the bounding rectangle of the nodes,
the node’s velocity stable value, the pointer pointed to parent
nodes, the record form of GG TPR-tree non-leaf node does
not change.

Estimating equation (1) shows that supposing there are n
members in a group of the massive mobile objects, the MBR
stable value is achieved by the equation as follows:

()() ()
==

−×−=
n

t
i

n

t
iiGroop tTvtTv

11

/~~
 （2）

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

1056

Under the help of GG TPR-tree and spatial partitioning
tree, we can predict the approximate location mobile

direction according to Groopv~ and road network structure,

achieving the exact answer of the statistical query.
Meanwhile, in order to update the dynamic information

of the massive mobile objects efficiently, we establish Hash
index list pointed to every mobile object in the memory. This
list may also achieve the exact answer of the deterministic
query in collaboration with the spatial partitioning tree.
Therefore, we establish the massive mobile objects’
complete query basis based on DTDI structure.

III. THE QUERY METHOD BASED ON DTDI

STRUCTURE

The massive mobile objects query method based on
DTDI does not only answer efficiently the deterministic
query request like simple real-time query and simple
continuous query, but also answer the statistic query request
like current window query, continuous window query and
dynamic condition query. Next we will discuss how to use
DTDI structure to achieve the query to the massive mobile
objects.

A. Simple real-time query

The simple real-time query is a common deterministic
query request which concerns about the location attribute
information of a specific object at some point. The index tree
mentioned above stored a triple information record for every

mobile object < refLoc , v~ , reft >. Only when the

discrepancy between actual position and theoretical position
calculated by the triples is greater than the distance error
allowed by the system, the triple group is updated. So we can
precisely calculate the massive mobile objects’ current
location according to the triple group and road curve-fitting
function.

ref

t

tt SdtvS
ref

+=  ~
 （3）

In the formula, refS is the distance between the starting

point and (0x , 0y) in the reference time refLoc ; is the

distance between the starting point and the massive mobile
objects in the query moment. We can obtain reversely the
massive mobile objects’ location coordinate (x, y) at the
moment according to the road curve-fitting function.

B. Simple continuous query

The simple continuous query is the expansion of the
simple real time query which queries the motional track of
the massive mobile objects with a period of time in the future.
In common condition, we can obtain the massive mobile
objects’ motional track function with the use of triples and
the road fitting curve. But if the massive mobile objects need
to pass the crossing point with the query duration, the
prediction of the motional track will become more complex.

Suppose the location function of the simple continuous

query is S(t), we can obtain the distance 0S between the

location of Loc:(0x , 0y) and the starting point and the

distance terminalS between the location of Loc:(0x , 0y)

and next crossing point, and then the time to the crossing
point is:

() refref

ref

t

t

tvSSt

SSdtv
ref

+−=

−=
~/

~

 terminalterminal

 terminal

terminal

 （4）

If the continuous time terminalt t≤ , it shows by (3):

() ref

t

t
SdtvtS

ref

+=  ~
 （5）

If the continuous time terminalt t> , supposing the

massive mobile objects go through the crossing points
related to 1G , 2G , 4G , 5G , as shown in picture one,

the possibility are 10%, 5%, 75%,10%, remaining in grid

1G and in grid 2G , 4G , 5G . After the massive

mobile objects pass over the crossing point, the speed may
change due to their move to other massive mobile objects
group. Assuming the previous measured accumulated speed

accumulation scalar values are
1

~
Gv ,

2

~
Gv ,

4

~
Gv ,

5

~
Gv , and

then:

() ()

() ()

() ()

() ()














=+=

=+=

=+=

=+=









%10~

%75~

%5~

%10~

terminal

terminal

terminal

terminal

terminal
5

terminal
4

terminal
2

terminal
1

pSdtvtS

pSdtvtS

pSdtvtS

pSdtvtS

t

t G

t

t G

t

t G

t

t G

（6）

C. Current window query

The current window query is one of the common
statistical queries, whose request content generally
designates a piece of an area. It queries all the massive
mobile objects within the area in the current time.

According to the massive mobile objects’ query feature
based on DTDI structure, we can know that when a group of
massive mobile objects pass through the crossing point, the
corresponding leaf-node record’s grid pointer is bound to
change, which index the massive mobile objects’ group.
Therefore, the massive mobile objects that go into the query
window are those having the intersection with the query
window on the road. To this end, we can take use of the
spatial partitioning tree based on the grid to index the related
roads and calculate the minimum MBR that related to these
roads. Then we index the massive mobile objects group on
these roads and estimate whether there is intersection

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

1057

between MBR and the query window according to the

velocity stable value of this group’s node Groopv~ . If there

exists the intersection between the two, we say that part of
the massive mobile objects belong to the window query
result category. We need to use the formula (3) to calculate
each v~ and decide how many massive mobile objects meet
query condition.

D. Continuous window query

The continuous window query is the expansion of current
window query, which needs to know how many massive
mobile objects meet the query condition during the future
time period [0, T]. Since the massive mobile objects can go
into the query field within the time t through the way of
changing the direction at some crossing points, the fields that
need to be inspected are no longer limited to the minimum
MBR which is composed of the roads intersected with the
query window, but need to inspect all the roads intersecting
with the roads within the query window. Thus, we need to
carry on the traversal query from the root node of GG TPR-
tree and do the following calculation with the use of MBR
and VBR of every node:

• Judging if we can extend MBR line to intersect with
the query window according to the current maximum
value of VBR within t.

• If they intersect with each other, we can calculate the
shortest path from the current MBR to the query
window according to the spatial partitioning tree
structure. And then judging if they can arrive at
destination within the time of T. When there is no
linking condition, the shortest path is ∞+ .

• Repeat the previous process until we choose out all
the leaf nodes that can reach the destination.
According to the formula (6), we can calculate that
how many massive mobile objects can reach the
query field within T among the massive mobile
objects group that the leaf nodes point to.

• Sum the results of the last step and achieve the query
outcome.

E. Dynamic condition query

The dynamic condition query is the one that a kind of the
massive mobile objects and the query condition itself change
dynamically with the time. Tao et al gave out the basic
concepts of the distance function with dynamic query in
document [6].

Definition of the spatial distance function: in d
dimensional European type space, supposing the reference

time is reft and the query Q and the mobile object O move

with the linear vector speed. While in any moment t of the
future, the function of the distance between the location

tLoc of query Q and the mobile object O is:

CBtAt t)O, dist(Q, 2 ++=
(A, B, C are all constants)

After joining into the grid information, the massive
mobile objects have to move on the limited road network,
thus the spatial distance between the two is limited by the
grid route. In addition, road condition changes dynamically
among grids. Supposing the connecting way between two
positions in the spatial roads is more than one, there may be
the situation that the massive mobile objects consumes more
time among the absolute distance that is shorter. Considering
these factors above, we define the function of grid distance
between the two points.

Definition of the grid distance function: in the grid space,

supposing in the reference time reft , the query Q and the

mobile object O move on the road of the edge with the linear
speed, and there are k-1 crossing points between the next
crossing point of Q and that of O, that is to say they will pass

through k roads 1L , 2L , …, kL , and the blocking rate of

every road are 1C , 2C , …, kC and
nv~

1Cn = . In any

moment of the future t, the function of the distance that Q
leaves the mobile object O is:

tvtvC oQk ×−×+






 ×=  ~~Lmin

 t)O, dist(Q,

k
k

（7）

The function of the distance that the mobile object O
leaves the query Q is:

tvtvC QOk ×−×+






 ×=  ~~Lmin

 t)Q, dist(O,

k
k

 （8）

We know the grid distance function between the query Q
and the mobile object O by (7), (8):

() t)Q, dist(O,, t)O, dist(Q,min

 t)O, dist(Q,

=
 （9）

When the request of dynamic condition query is raised,
firstly, we start to search from the root node according to GG

TPR-tree. If the node MBR's four vertices have 01 =dist ,

02 =dist , 03 =dist , 04 =dist in the time 1t , 2t , 3t ,

4t (],0[,,, 4321 Ttttt ∈), and 4321 tttt ≠≠≠ separately,

within the range of [0, T]. Therefore, all the child nodes of

this node do not meet the query condition. If 1t , 2t , 3t , 4t

do not exit, all the child nodes of this node do not meet the
query condition. And then we cut the branches. If

met 4,3,2,1,0 ∈∃= idisti , then repeat the process to

calculate the grid distance among its child nodes. At last,
summarizing the leaf nodes that satisfy the conditions and
we achieve the query results set.

Algorithm 1: dynamic condition query algorithm

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

1058

Input: GG TPR-tree, space dividing tree, query region,
query continuance (T)

Output: query results nodestack
BEGIN
/* Put the root node of GG TPR-tree into the

nodestack.*/
1. nodestack ← root of GG TPR-tree
2. For all node nodestack
/*using the distance with space dividing tree, query

region, T to calculate */

3. Calculate 1dist , 2dist , 3dist , 4dist

4. If not 4,3,2,1,0 ∈∀= idisti then

/* Delete the node whose minimum distance is greater
than that within the query request. */

5. Delete node from nodestack
6. else

7. if 4,3,2,1,0 ∈∃= idisti then

/* Delete the node whose maximun distance is greater
than that within the query request. */

8. Delete node from nodestack
/* Insert all child nodes of this node into the result stack.

*/
9. nodestack ← all child nodes of node
10. End If
11. End If
12. End For
END

IV. EXPERIMENT

In order to evaluate the query performance of massive
mobile objects based on DTDI structure, we conduct the
following experiments: the space region is a rectangular
frame consisting of 800*600 pixels. There are “four
horizontal, five vertical”simulate road in it. Each mobile
object on the road is represented by a circle with a 40-pixel
radius. The objects are distributed randomly on all roads. We
adopt the proportion of 100 steps versus 100 steps to allocate
the time of red lights and green lights at the crossing roads.
For simplicity, we assume that all the roads are two-way and
one-lane, that is to say, the massive mobile objects are
incapable of surpassing the objects ahead. In addition, all the
turnings (include the right turnings) are controlled by signals
and the turning probability of each mobile object is known
already.

as the VBR of PRA tree differs little from the v~ of
DTDI and both approximate the actual velocity of massive
mobile objects, therefore, the predicted data of massive
mobile objects within a recent time range are relatively
accurate. With the increase of the predicted time range,
under the guidance of network structure, turning probability
of crossing point, the accumulated EXP velocity value
v~ recorded in history record, DTDI is capable of ensuring
that the predicted direction and velocity approximate the
possibly actual direction and velocity of the massive mobile
objects in the future, therefore, the predicted precision is

relatively high. However, as v~ is adopted as EXP after
passing the crossing point, and there exist certain errors
compared with actual velocity value in the future, as a result,
the precision becomes gradually low as the predicted time
range increases. To PRA tree, there is no guidance of
network structure in it, so it is incapable of considering
turning, therefore, its predicted success rapidly decrease.
Meanwhile, because the mass data can compensate for the
error, accordingly, the ratio between the predicted number
and the actual number will not be extremely low.

V. CONCLUSION

This thesis offers solutions to simple immediate query,
simple continuous query, active window query, and
continuous window query, dynamic condition query and
other query requests by employing DTDI index structure.
The experiments prove that compared with other existing
index structures of massive mobile objects, the results of
predicted queries of massive mobile objects within a limited
range. With the support of DTDI index structure, query
method of massive mobile objects has higher precision and
better query performance.

ACKNOWLEDGMENT

This paper is supported by the Fundamental Research
Funds for the Central Universities (No.2012XJ031). Without
this help, this work would never have been completed.

REFERENCES

[1] K. Tabassum, M. Hijab, and A. Damodaram, “Location Dependent

Query Processing – Issues, Challenges and Applications”, 2010
Second International Conference on Computer and Network
Technology (ICCNT 2010), 2010, pp.239-243, doi:
10.1109/ICCNT.2010.39.

[2] Qing Zhu, and Zuoyan Qin, “HyDB: Access Optimization for Data-
Intensive Service”, 2012 IEEE 14th International Conference on High
Performance Computing and Communication & 2012 IEEE 9th
International Conference on Embedded Software and Systems
(HPCC-ICESS 2012), 2012, pp.580-587, doi: 10.1109/HPCC.2012.84.

[3] Ye Liang, “Double R-tree and Double Indexing for Mobile Objects”,
Advances in Intelligent and Soft Computing, 2012, Volume 135, pp.
271-278.

[4] Ye Liang, “An Efficient Indexing Maintenance Method for Grouping
Moving Objects with Grid”, Procedia Environmental Sciences, 2011,
11(1), pp. 486-492.

[5] Ye Liang, “GG TPR-tree Indexing Method for Grouping Moving
Objects”, Proceedings of International Conference on Computers,
Communications, Control and Automation, 2011, pp.375-378.

[6] Jimeng Sun, Dimitris Papadias, Yufei Tao, and Bin Liu, Querying
about the past, the present, and the future in spatio-temporal database.
20th International Conference on Data Engineering, 2004, pp.202-213,
doi: 10.1109/ICDE.2004.1319997

[7] Simonas Saltenis, Christian Jensen, and S Jensen, “Indexing the
positions of continuously moving objects” SIGMOD 2000, 2000, pp.
331-342.

[8] Wei Liao, Ning Jing, and Zhinong Zhong, “An efficient prediction
technique for range aggregation of moving objects”, Journal of
Computer Research and Development, 2007 Vol.44(6):1015-1021

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

1059

