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Abstract—General pseudospectral method is extended to Lie 
group by virtue of equivariant map for solving rigid dynamics 
on Lie group. In particular, for the problem of structural 
characteristics of the dynamics system can not be conserved by 
using general pseudospectral method directly on Lie group, the 
differential equation evolving on the Lie group is transformed 
to an equivalent differential equation evolving on a Lie algebra 
on which general pseudospectral method is used, so that the 
numerical flow of rigid body dynamics is ensured to stay on 
Lie group. Furthermore, structural conservativeness and 
numerical stabilities of this method are validated and analyzed 
by simulation on a 3D pendulum in comparison with using 
pseudospectral method directly on Lie group.  

Keywords–geometric pseudospectral method; Lie group; 
Equivariant map; 3D pendulum 

I. INTRODUCTION 

The dynamics of a rigid body has intrinsic invariant 
properties, for example, energy, momentum, symplecticity, 
structure of configuration, etc. The invariants often manifest 
through geometric characteristics of exact flow, such as area 
preservation, volume preservation. Preservation of geometric 
characteristics of the corresponding numerical flow not only 
produce an improved qualitative behavior, but also allows 
for a more accurate long-time integration than with general-
purpose methods [1]. Therefore, developing numerical 
method with preservation of geometric characteristics for 
solving differential equation of rigid body dynamics is very 
important. 

Finite difference methods (1950s), finite element 
methods (1960s) and spectral methods (1970s) are three 
major technologies for numerical solution of differential 
equations. Spectral methods are widely used in fluid 
mechanics, quantum mechanics, linear and nonlinear waves, 
aerospace, and other fields by virtue of its high accuracy, 
spectral(or exponential) convergence rates, and requirement 
for less computer memory under the same precision 
condition, etc[2]. According to the different choice of test 
functions or error, spectral method is divided into Galerkin, 
tau and collocation[3]. Among them, collocation method, 
also known as pseudospectral method, is advantageous 
because the coefficients of the Lagrange polynomials are 
equal to the value of the approximating polynomial at the 
collocation points[3]. However, when applied to rigid body 
dynamics directly, it can not conserve geometric properties. 

Thereby, how to conserve its geometric properties, and 
extend it to dynamics system on Lie group is the main topic 
in this paper. 

To our knowledge, R. Moulla et al[4] was the first to 
propose the concept of ‘geometric pseudospectral method’. 
They suggested a polynomial pseudospectral method that 
preserves the geometric structure of port-Hamiltonian 
systems, the phenomenological laws and the conservation 
laws without introducing any uncontrolled numerical 
dissipation. However, their method was designed only for 
port-Hamiltonian systems having a special structure, that is, 
the Dirac structure. Therefore, it can not be directly extended 
to the general system. [5] compared pseudospectral method 
and discrete geometric method for modeling quantization 
effects in nanoscale electron devices; they confirmed that 
pseudospectral methods can achieve the spectral accuracy 
but are mainly suitable for simple geometries. 

In this paper, drawing on Kenth Engø’s equivariant 
map[6], we extend pseudospectral method to Lie group, and 
make the method have symplecticity by proper choice of 
collocation points. Second, we analyze Lie group structural 
conservativeness, energy conservation, and momentum 
conservation of this method by simulation on a 3D pendulum 
in comparison with using general pseudospectral method on 
Lie group directly. 

This paper is organized as follows. For completeness, the 
basic idea of the pseudospectral method is roughly given in 
Section II. Geometric pseudospectral method on Lie group is 
developed in Section III, in subsection III.A, we briefly 
describe differential equation on Lie group, in subsection 
III.B, we apply general pseudospectral method to differential 
equation on Lie group by the equivariant map, and 
symplectic collocation points are selected in next subsection. 
In Section IV, we validate and analyze structural 
conservativeness and numerical stabilities  of this method by 
simulation on a 3D pendulum in comparison with general 
pseudospectral method. 

II. PSEUDOSPECTRAL METHOD 

Consider differential equation on Euclidean space n  

 ( ) ( )( ) ( )0 0, , ny t f t y t y t y= = ∈   (1) 
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First, we equally divide a time interval 0 , ft t    into 

several subintervals [ ]1,i it t + . Let 0 1 Nτ τ τ< < <  be 

collocation points, where  0 itτ =  and 1N itτ += , subjected to 

 , 0 1, 1, ,j i i j jt h j Nτ α α= + < < =   (2) 

Next, we select the following N th degree Lagrange 
interpolation polynomial for approximating the solution 

( )y t  of (3), 

 ( ) ( ) ( )
0

y Y c
N

i i
i

t t L t
=

≈ =  (3) 

where the function ( )
0,

, 1, ,
N

j
i

j j i i j

t
L t i N

τ
τ τ= ≠

−
= =

−∏   is 

Lagrange polynomials, satisfying the isolation property, 

 ( ) 1,

0,i j ij

i j
L

i j
τ δ

=
= =  ≠

 (4) 

Equation (3) together with the isolation property leads to 
the fact that, 

 ( )c yi iτ=  (5) 

thus, ( ) ( )Y yi iτ τ= . 

Finally, we describe the discretized dynamics as defect 
constraints[7], 

 ( ) ( )( )Y ,j j j jf yς τ τ τ= −  (6) 

and use iterative algorithms to approximate ( )Y t  in order to 

obtain the solution of (1) at time 1it + , 

 ( ) ( )1 Yi i iy t t h+ ≈ +  (7) 

and refer it as the initial value of ( )y t  in [ ]1 2,i it t+ + . 

According to whether the endpoint as a collocation point, 
collocation methods fall into three general categories[8]: 
Gauss methods, neither of the endpoints it  or 1it +  are 
collocation points; Radau methods, at most one of the 
endpoints it  or 1it +  is a collocation point; Lobatto methods, 

both of the endpoints it  and 1it +  are collocation points. 
Furthermore, according to different selection methods of 
collocation points, collocation methods can be divided into 
standard collocation method and orthogonal collocation 
method. Common collocation points in orthogonal 
collocation are those obtained from the roots of either 

Chebyshev polynomials ( )NT t  or Legendre polynomials 

( )NP t  belongs to the orthogonal polynomial[9]. The benefit 

of using orthogonal collocation over standard collocation is 
that the quadrature approximation to a definite integral is 
extremely accurate[7].  

III. GEOMETRIC PSEUDOSPECTRAL METHOD ON LIE 

GROUP 

A. Differential equation on Lie Group 

Differential Equation is presented in the following 
canonical form 

 ( ) ( )( ) ( )0 0, ,y t t y t y t yξ= = ∈   (8) 

  is a class of homogeneous manifolds, ξ  is the 
infinitesimal generator of the left action : GΦ × →   on 
the Lie group G  corresponding to its Lie algebra ξ ∈ g , 

 ( ) ( ) ( )0 exp

d
,

d t tq q q
t ξξ == Φ ∀ ∈   (9) 

where ξ  is a vector field over  , ( )exp :tξΦ →   is 

the flow of ξ , ( )exp t Gξ ∈  is called the exponential map, 

it parameterizes G  by Lie algebra ξ . What the infinitesimal 
generator describes is the direction of the motion on the 
manifold. This is the tangent of the flow and the direction of 
where to proceed. The solution of a differential equation is 
an integral curve of the vector field.  

An important special case is when G  is a subset of 

( )GL , n  the general linear group of all nonsingular n n×  

matrics, it is then called a matrix lie group. In the case of 
matrix Lie group, the exponential operator is just 

 ( ) ( )
0

1
exp

!
k

k

t t
k

ξ ξ
∞

=

=  (10) 

In remainder of this paper，our study  is limited to G  is 
a matrix Lie group, therefore (8) becomes a matrix 
differential equation. This restriction is for three reasons: 
first, we will establish the model of the rigid body dynamics 
evolving on matrix Lie group, followed by Lie group to 
facilitate the calculation, furthermore, our theory is equally 
applicable to the general Lie group. 

B. Pseudospectral method on Lie Group 

It is well-known that the solution of (8) stays on   for 
all 0t t≥ . How to use pseudospectral method for solving 
differential equation (8) on Lie group, while maintain the 
important structural feature of the differential equation under 
discretization of y  is the main problem to be solved in this 
paper. 
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As mentioned, infinitesimal generator of group action 
actually is a vector filed, it governs the equation varies. In 
Euclidean space n , the solution space and the tangent 
space are linear vector space, classical numerical methods 
just rely on domain space consisting of vectors,  it will 
conserve the structural characteristics of the differential 
equations. However, Lie group is a nonlinear manifold, using 
classical numerical methods directly for solving differential 
equation on Lie group will not be able to conserve its 
structural characteristics. [6] indicated that any differential 
equation in the form of an infinitesimal generator on a 
homogeneous space is shown to be locally equivalent to a 
differential equation on the Lie algebra corresponding to the 
Lie group acting on the homogenous space. Also, Lie algebra 
of a Lie group is a vector space with the additional structure 
of a commutator. For the above reasons, the Lie algebra of 
the Lie group acting on the homogeneous space is the natural 
choice of space for our pseudospectral method. We will 
apply the equivariant map to transform the differential 
equation evolving on the homogeneous space to an 
equivalent differential equation evolving on a Lie algebra. 
Next, we will briefly describe the basic idea of equivariant 
map. 

Definition 1(Equivariant map) . Let   and   be 
manifolds and let G  be a Lie group which acts on   by 

:gΦ →   and on   by :gΨ →  . A smooth 

map :f →   is called equivariant with respect to these 
actions if, for all g G∈ , 

 g gf fΦ = Ψ   (11) 

that is, the following diagram commutes, 

 

Figure 1.  Diagram commutes of equivariant map f  

First, from the definition of an action of G  on  , we 
can get an equivariant map :y GΦ →  with respect to the 

left translation action gL  of G  on itself and an action 

,g g GΦ ∈  of G  on  , 

 y g g yLΦ = Φ Φ   (12) 

It is known that there is a local coordinate map 
:f G→g  on G , the most typical is exponential map exp . 

At this point, we need to find an action Bg  of G  on g  

such that f  will be an equivariant map with Bg  and the left 

action of G  on itself, 

 Bg gf L f=   (13) 

In the case where f  is the exponential map, Bg  is 

nothing else than the well-known Baker-Campbell-Hausdorff
（BCH）formula, 

 ( ) ( )( )B log expg u g u= ⋅  (14) 

where log  is called the logarithm map. Since composition of 
two equivariant maps is an equivariant map, we can 
construct an equivariant map y fΦ   from g  to   with 

respect to the action Bg  on g  and Φ  on  , 

 

Figure 2.  Diagram commutes of composition y fΦ   

The theorem 3.6 of [6] stated that if φ  is an equivariant 
map, then the infinitesimal generators of the action with 
respect to the same element ξ ∈ g  are φ –related vector 

fields. Thus, the infinitesimal generators of the flows Bg  

and gΦ  on g  and  are y fΦ  –related, that is, 

 T Ty yf fξ ξΦ = Φ     g  (15) 

Finally, we need to determine what ξg  is, and the 

following theorem gives the conditions that it need to meet. 
Theorem 2[6]. Let :f G→g  be a coordinate map on 

G  and y fΦ   equivariant with respect to the flows Bg  and 

gΦ . The infinitesimal generator of Bg  satisfying (15), is 

( ) ( )1d uu fξ ξ−=g . d :f →g g  is the trivialization Tf  

defined as 
( ) 1d T Tu uf u

f R f−=  . 

The following commutative diagram sums up above 
processes. 

 

 

Figure 3.  Composition y fΦ   and its infinitesimal generator 

According to the different choices of local coordinate 
map f ， function ( )1d uf ξ−  have different forms. In the 

case where f  is the exponential map, the vector field 1d uf
−  
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on g  can be represented by following an infinite sum of 
elements in g , 

( ) [ ] [ ]1

2

1
d exp , , , , , ,

2 !
k

u
k

B
u u u u

k
υ υ υ υ

∞
−

=

   = − +        (16) 

where [ ],⋅ ⋅  is the matrix commutator defined by  

[ ],A B AB BA= − , when A  and B  are matrics, and kB  is 

the k th Bernoulli number. 

0, 2 1,

1 1 1 1
! , , , , 2, 4,6,8,

12 720 30240 1209600

k

k N N
B

k k

+ ∈ − ∈
=  − − =

 


 

In the case of solution of (8) satisfying the form, 

 ( ) ( )( ) 0expy t u t y=  (17) 

Using the 1dexp− , we differentiate (17) and substitute it into 

(8) to obtain a differential equation for ( )u t  

( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

1dexp

1 1
, , ,

2 12

uu t t

t u t t u t u t t

ξ

ξ ξ ξ

−=

 = − + −       




 (18) 

where ( )0 0u t u= ∈ g . 

In the general case we can apply Picard iteration to (18), 
deduce the famous Magnus expansion[10]. 

 
( ) ( )

( ) ( )1

1 10

1 2 2 10 0

d

1
, d d

2

t

t

u t

τ

ξ τ τ

ξ τ ξ τ τ τ

=

 − +  



  
 (19) 

Now, we can use general pseudospectral method on ( )u t  

without any concerns. We approximate function ξ  in vector 

space g  by virtue of Lagrange polynomials at 1 2, , ,c c cν , 

 ( )( )
1

,
s

n
i i

i

t t
t y t L

h
ξ ξ

=

− ≈  
 

  (18) 

where 

 ( )
1

s
k

i
k i k
k i

t c
L t

c c=
≠

−
=

−∏  (19) 

 ( )( ), , 1, ,i n i n it c h y t c h i sξ ξ≈ + + =   (20) 

Finally, we substitute (18) into (19) to obtain ( )u t  and 

evaluate (17) to obtain ( )y t . Then, solving (8) on 

homogeneous manifold   is equivalent to solving 
differential equation on a Lie algebra g . 

C. Choice of symplectic collocation points 

As mentioned, there are a variety of options on the choice 
of  collocation points, for example, Gauss-Legendre points, 
Chebyshev-Gauss-Lobatto points, etc. In order to make 
pseudospectral method have symplecticity, we need to 
consider the relationship between the choice of collocation 
points and symplecticity. [1] stated that the Gauss 
collocation methods are symplectic. Therefore, we select 
Gauss-Legendre points as our collocation points in this paper. 

IV. NUMERICAL SIMULATION  

( ) { }3 3SO 3 ,det 1T
ab ab ab abR R R I R×= ∈ = = +  is called 

the special orthogonal group, a special class of matrix Lie 
group, whose elements meet to special nature T

ab abR R I= . 
Therefore, it is often to validate the structural features of 
algorithms on ( )SO 3 . The configuration of 3D pendulum 

just is ( )SO 3 , next, it will be used as a simulation object 

for this method in comparison with the other methods[11]. 

 
Figure 4.  A schematic of 3D rigid pendulum 

A. Mathematical models for a 3D rigid pendulum 

 ˆ b
ab ab abR R ω=  (21) 

 ( ) ( )1 1
3

b b b T a
ab ab ab abJ J mgJ R eω ω ω ρ− −= − × + ×  (22) 

where :abR q= is a generalized coordinate of rotation angular 

configuration of the body-fixed coordinate frame { }b  

relative to the  inertial coordinate frame { }a , m  is the mass 

of pendulum, J  is the moment of inertia of pendulum, b
abω  

 

 

Z  
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is the angular velocity in the body-fixed coordinate frame, 
ρ  is body-fixed vector from the pivot to the center of mass 

of the pendulum, [ ]3 0 0 1
Tae =  denotes the direction 

vector of gravity in inertial coordinate frame. 
 

B. Geometric pseudospectral method 

We take implicit pseudospectral method based on Gauss-
Legendre collocation points, and the step is taken as  

0.05h = ,  let 1c  and 2c  be the Gauss-Legendre points, 

 1

1 3

2 6
c = − , 2

1 3

2 6
c = +  (23) 

and evaluate ξ  at these collocation points in [ ],n nt t h+ , 

 ( )1 1nt c hξ ξ= + , ( )2 2nt c hξ ξ= +  (24) 

A 4th order approximation to ( )u t  is then given as, 

 [ ] ( ) ( ) [ ]4 2
1 2 1 2

1 3
,

2 12
u t h hξ ξ ξ ξ= + −  (25) 

The solution 1ny +  is updated according to 

 [ ] ( )( )( )4
1 exp ,n ny u t y+ = Φ  (26) 

where exp  is matrix exponential operator (10). 
Notes that the tangent space of a Lie algebra ξ  is 

isomorphism to Euclidean space n . Thus, we can directly 
apply general pseudospectral method to (22) for solving 1ξ  

and 2ξ . Specific algorithm process is shown in Fig. 5. 

Algorithm 1 
Step 1. Initialization: 

Initialize attitude 0R , angular velocity 0ω ; 
Step 2. Main loop 

Step 2.1. Evaluate Lie algebra ( )1 1: b
ab nt c hξ ω= +  

Evaluate Gauss differential matrix 1D  in [ ]1,n nt t c h+ , 

Use Seidal type iteration for solving following dynamics 
equation, obtain the Lie algebra 1ξ , 

( ) ( )1 1
1 3

b b T a
ab ab abJ J mgJ R eξ ω ω ρ− −= − × + ×  

Step 2.2. Evaluate Lie algebra ( )2 2: b
ab nt c hξ ω= +  

Evaluate Gauss differential matrix 2D  in [ ]2,n nt t c h+ , 

Use Seidal type iteration for solving following dynamics 
equation, obtain the Lie algebra 2ξ , 

( ) ( )1 1
2 3

b b T a
ab ab abJ J mgJ R eξ ω ω ρ− −= − × + ×  

Step 2.3. Evaluate 4th order approximation of ( )u t  

[ ] ( ) ( ) [ ]4 2
1 2 1 2

1 3
,

2 12
u t h hξ ξ ξ ξ= + −  

Step 2.3. Update attitude 1nR +  and angular velocity 1nω +

[ ] ( )( )4
1 expn nR R u t+ = , 1 1n n nRω ω+ +=  

Step 3. End Loop. 
Figure 5.  4th order implicit geometric pseudospectral algorithm 

C. Results and analysis 

The properties of a 3D pendulum are presented at Table I. 

TABLE I.  THE PROPERTIES OF 3D RIGID PENDULUM[12] 

Time [ ]0,30t = s 

Mass 1m = kg 

Body-fixed vector [ ]0,0,1ρ = m 

Moment of inertia [ ]diag 1, 2.8, 2J = kg·m2 

Initial attitude ( ) 3 30abR I ×=  

Initial angular velocity ( ) [ ]0 0.5, 0.5,0.4
Tb

abω = − rad/s 

Simulation results are presented in Fig. 6, where the top 
figure shows time histories of the angular velocity, and the 
bottom figure shows the variation of the ( )SO 3  error (27), 

the total energy (28) and the angular momentum around the 
vertical axis  (29). 

 3 3error TI R R× ∞
= −  (27) 

 ( ) ( ) 3

1
energy

2

Tb b T
ab abJ J J mge Rω ω ρ= −  (28) 

 3momentum T b
abe RJω=  (29) 
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1
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Figure 6.  Simulation results of 3D pendulum: (a) angular velocity, (b) the 

( )SO 3  error, total energy, and momentum. (general pseudospectral: blue, 

geometric pseudospectral: red) 

The result show that general pseudospectral method can 
not conserve energy and momentum, while the ( )SO 3  error 

are about 1310−  and increase as the simulation time increases. 
For geometric pseudospectral method, the ( )SO 3  error are 

up to machine precision 1610− , and the method presents a 
good long-time behavior.  

 

V. CONCLUSION 

Aiming at can not conserve structural properties of 
dynamics system by applying general pseudospectral method 
onto Lie group directly, we transform the differential 
equation evolving on the Lie group to an equivalent 
differential equation evolving on a Lie algebra, and use 
general pseudospectral method on the equivalent differential 
equation, so that ensure that numerical flow of rigid body 
dynamics stay on Lie group. We will validate our method on 
more general homogeneous manifolds, such as, special 

Euclidean group, spheres, tori, Stiefel and Grassmann 
manifolds, etc. 
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