
Paper Title (use style: paper title) SR-Tree: An Index Structure of Sensor
Management System for Spatial Approximate Query

Xing Tong, Yang Liu, Zhao Shi, Peng Zeng, Haibin Yu
Department of Industrial Control Network and System

Shenyang Institute of Automation Chinese Academy of Sciences
Shenyang, Liaoning 110016, China

E-mail: tongxing@sia.cn

Abstract—Sensor management plays an important role in the
field of Internet of Things. Therefore, the requests of spatial
approximate query increase dramatically. Indexing is no doubt
a feasible way for efficient spatial approximate search.
However, there is a lack of an effective index structure for
spatial approximate query. In this paper, we propose a new
type of index structure called SR-tree for providing more
intelligent retrieval, which is based on R-tree and inverted
table. Our index can support for spatial approximate search
and work freely either in memory or external memory. The
experimental results show that the structure proposed can
provide high scalability and fast response time.

Keywords-sensor management system; index structure;
Internet of Things.

I. INTRODUCTION

The system of management and processing sensor data is
called sensor management system[1]. In IT systems, the
users generally first target some interested sensors through
sensor management system, then get the sensor data to
analysis and practice. Thus, the sensor retrieval has an
important function in sensor management system.

One hand, with the increase of the number and variety of
sensors, it is more difficult to locate a sensor in the system.
On the other hand, the query criteria can be varied for
meeting users while retrieving. In other words, the system
returns to the users the available sensor normally. But if it
could not completely match the users' demand, similar
sensors set is returned to users. Because of these two reasons,
it is urgent to build an index structure for sensor management
system both supporting the large amount of data and
approximate queries.

In the retrieval process, we identify sensors through their
characters. First, since the position information is an
important factor to recognize sensors, we may make a
geographical division for sensors using R-tree. Second, we
use the inverted index table structure on other properties of
sensors, such as a wireless communication protocol, energy
consumption, perceived function, data upload frequency, etc.
We call this kind of queries spatial approximate queries
related to sensor location and other properties. Ultimately,
we build our index structure SR-tree, which combines R-
tree and inverted list and supports the realization of spatial
approximate query.

The contributions of this paper include:

1 We give a definition of spatial approximate query and
present a sensor management system indexing structure that
supports spatial approximate query.

2 An efficient search algorithm based on SR-tree is
proposed.

3 Extensive experimental on simulated datasets results
show that our indexing scheme achieves favorable
performance.

The rest of the paper is organized as follows. Section II
discusses the necessary background and gives a formal
problem definition. Section III presents the basic principles
of the SR-tree. Section IV presents details of

search algorithm. Section V presents a comprehensive
evaluation of the proposed techniques and Section VI
concludes the paper.

II. PRELIMINARIES

In this section, first we discusses the necessary
background of R-tree and inverted table and then we give the
formal definition of SAQ.

A. R-tree

R-tree structure is commonly used in the geographic
information system. The R-tree [2] and its variants (R�-tree
in particular [3]) share a similar principle. They first group
points that are in spatial proximity with each other into a
minimum bounding rectangle (MBR); these points will be
stored in a leaf node. The process is repeated until all points
in P are assigned into MBRs and the leaf level of the tree is
completed. The resulting leaf node MBRs are then further
grouped together recursively till there is only one MBR left.
Each node in the R-tree is associated with the MBR
enclosing all the points stored in its sub-tree. Each internal
node also stores the MBRs of all its children. An example of
an R-tree is illustrated in Figure 1 where pi denotes one point
and Nj represents the area.

B. Inverted Table

In computer science, an inverted index (also referred to
as postings file or inverted file) is an index data structure
storing a mapping from keywords, such as words or
numbers, to its locations in a database file, or in a document
or a set of documents. It is the most popular data structure
used in document retrieval systems, [4] used on a large scale
for example in search engines.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

1078

In sensor management system, we use the properties of
the sensor as a keyword, use the ID number as the
“location” to build the inverted table. We show a simple
example in Table 1. In the original table, the first column
implies the sensor ID and the second column contains some
attributes of each sensor, here represented by a-g. We use
the contents of the table to construct a simple inverted table
as follows.

TABLE I. AN EXAMPLE OF INVERTED TABLE

Sensorid Sensor property

1
2
3
4
5

a,b,c
a,b,d,e
b,c,f,g
b
a,b,c,f,g

Keywords a b c d e f g
Locations 1

2
1
2
3
4
5

1
3
5

2 2 3
5

3
5

C. Problem Formulation

Generally, users give the query conditions including the
location of the sensor and attribute information and sensor
management system traverses SR-tree to get a result set
meeting the query conditions.

We call this kind of query spatial approximate query
(SAQ) which consists of three parts: the spatial query Qr,
the sensor property query Qp and a query threshold T. A
range query Qr is simply defined by a query rectangle r; The
sensor property query is defined by one or more query
sensor properties p; And our system predefined a threshold
which implies the least number of public properties between
result set and Qp. i.e., SAQ = (Qr=r; Qp=(p1,p2,p3…); T).

Now we define the result set. First of all, we define a
sensor S(L, P) where L denotes the location of the sensor
and P denotes the collection of properties about sensors.
Formally, the result set for SAQ is

{S(L,P)|L Qr ∧ P Qp }. In other words, sensors in
result set must be in a certain area and contain T properties
intersecting with Qp at least. SAQ is different from queries
respect to spatial databases [5,6,7], because what we search
for is the property of sensors rather than a string.

III. PROPOSED INDEX STRUCTURE

In this section, we give the details of SR-tree structure,
which is constituted by r-tree and the inverted table. The
formal definition of SR-tree is as below:

DEFINITION (SR-tree)
A SR-tree is a tree structure which contains leaf nodes

and intermediate nodes. Each leaf node is represented as a
double tuple(R, IT) where R is a spatial scope including
space of lower nodes the same as r-tree and IT is an inverted

table constructed by the attributes of all the sensors in the
geographic range R. Each intermediate node is a double
node(R, V), where V is a collection of sensor properties
locating in R(We use the vector to store V in our system).

Figure 2 The SR-tree structure.

The Figure 2 above shows a simple SR-tree structure for
discussing and SR-tree in applications can be multi-level,
multi-branched and unbalanced. In this kind of index
structure, it is convenient to do SAQ. We can filter the
location and attribute information in internal nodes at the
same time. Afterwards, through the inverted list we specific
sensors for applications in leaf nodes. In next section, we
will give the details of search algorithm.

IV. SEARCH ALGORITHM BASED ON SR-TREE

This section presents a search algorithm supported by
SR-tree where the input is the query terms SAQ and the root
node N of the index structure, the output is a result set RS
satisfying SAQ. Search algorithm recursively traverses the
entire index structure that can determine whether the sub-
tree contains the query results on internal node, and
continue to traverse his child nodes if possible. The pseudo-
code of search algorithm is as follows:

Search_BasedSR-tree(Query SAQ, Tree node N, Result set RS)
Input: SAQ = (Qr; Qp; T) and root node N

Output: Result set RS

1: if N is the leaf node then
2: Candidate set CS=N.IT.Find(Qp, T)

3: for each S do

4: if S.L Qr then

5: RS.add(S)
6: else

7: if N.R Qr && N.V Qp then

8: for each child C do

9: Search_BasedSR-tree(SAQ,C,RS)

During traversing internal nodes, if the intersection
between geographical scope of nodes and Qr is not empty,
as well as the intersection of properties contained in the
node and Qp meeting the threshold(Line 7), then the sub-tree
rooted at this node may contain query results, thus
recursively visiting its child nodes (Line8-9). When
processing leaf nodes, the program calls the inverted table
query algorithm Find(Qp, T) (This algorithm has been
studied extensively in information retrieval field beyond the
scope of article discussion and we use the classic algorithm
DivideSkip[8] in our system.) which first finds a candidate

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

1079

set that matches Qp (Line 2), and then detects Qr, ultimately
adds sensors meeting conditions to the result set (Line 3-5).

V. EXPERIMENTAL EVALUATION

In this section we evaluate the performance of the query
respect to SAQ on a simulated dataset.

We simulated a sensor data collection which contains
100 thousands sensors. Each sensor is constituted by
randomly location information represented by the two-
dimensional coordinates in the entire area [(0, 0), (100,100)]
and a collection of properties choosing 10-20 items from a
total of 100 properties from all sensors. All of data was
stored in the file system and we took 100 attribute as
keywords in inversed table, the offset of each sensor data in
the file system as the id number of sensors.

We compile all the programs in Windows7 using jdk 6.0
with java. The experiments are run on a Intel(R)Core(TM)
i5-2400 CPU @3.10GHz with 4 GB main memory.

As far as we know, we are the first to study the index
structure of sensor management system for SAQ queries.
We give the query time with the increase of the amount of
data, as shown in Figure 3. Since the large amount of data is
limited by memory capacity, the index structure can be built
in memory or on disk. Thus, we had test queries in two
setting, one is the index is located in disk while the other is
the index is in main memory. In the first type of
experiments, we measured the performance of queries when
all data required for answering a query needed to be
retrieved from disk. In the second setting, the experiment
represents the other extreme in which all data required to
answer a query is already in memory.

0.19 1.39 2.14

10.08

17.6

0

5

10

15

20

20 40 60 80 100

Number of sensors(thousands)

Q
u
e
r
y
i
n
g

t
i
m
e
(
s
)

(a
)Raw disk

3.24 17.65 27.19

116.32

197.24

0

50

100

150

200

250

20 40 60 80 100

Number of sensors(thousands)

Q
u
e
r
y
in
g

t
i
m
e(
m
s
)

(b) Fully memory
Figure 3 The scalability of SAQ.

The results show SR-tree offers favorable scalability
either on raw disk or in fully memory. Because we used
filter conditions Qr and Qp simultaneously in high level of
the tree, we could filter more leaf nodes unsatisfied with the
query even though large amount of data.

VI. CONCLUSION

In this paper we propose a general tree-based index
structure to support spatial approximate queries with respect
to a threshold. We merge R-tree and inverted list to build
our index structure SR-tree, which supports the realization
of an effective search algorithm. The experimental results
on real datasets show our indexing scheme achieves
comparable performance. Furthermore, our index scheme
can be easily implemented in existing commercial sensor
management systems with existing tree-structured index and
small available memory.

ACKNOWLEDGEMENT

The authors acknowledge the financial support of the
Strategic Priority Research Program of the Chinese Academy
of Sciences under Grant No.XDA06020302, the Important
National Science and Technology Specific Project under
Contact No.2010ZX03006-005-01, the National High
Technology Research and Development Program of China
under 863 Program No.2011AA040103.

REFERENCES
[1] Li JianZhong, Li JinBao, and Shi ShengFei, “Concepts, Issues and

Advance of Sensor Networks and Data Management of Sensor
Networks,” Journal of Software, vol. 14, 2003, pp. 1717-1727.

[2] A. Guttman, “R-trees: a dynamic index structure for spatial
searching,” Proc. Special Interest Group On Management Of Data,
1984.

[3] N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger, “The R∗-
tree: an efficient and robust access method for points and rectangles,”
Proc. Special Interest Group On Management Of Data, 1990.

[4] Zobel, Justin, Moffat, etc, “Inverted files versus signature files for
text indexing,” ACM Transactions on Database Systems (TODS), vol.
23, 1998, pp. 453-490.

[5] Sattam Alsubaiee, Alexander Behm, and Chen Li, “Supporting
Location-Based Approximate-Keyword Queries,” Proc. The 18th
SIGSPATIAL International Conference on Advances in Geographic
Information Systems, ACM Press, 2010, pp. 61-70.

[6] Bin Yao, Feifei Li, Marios Hadjieleftheriou, and Kun Hou,
“Approximate string search in spatial databases,” Proc. The 26th
International Conference on Data Engineering, IEEE Press, 2010, pp.
545-556.

[7] Ian De Felipe, Vagelis Hristidis, and Naphtali Rishe, “Keyword
Search on Spatial Databases,” Proc. The 24th International
Conference on Data Engineering, IEEE Press, 2008, pp. 656-665.

[8] Chen Li, Jiaheng Lu, and Yiming Lu, “Efficient merging and filtering
algorithms for approximate string searches,” Proc. The 24th
International Conference on Data Engineering, IEEE Press, 2008, pp.
257-266.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

1080

Figure 1 The R-tree structure.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

1081

