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Abstract—Dielectric loss is caused due to imperfect dielectric 
insulation, in order to study the impact of the dielectric loss 
consider a uniform loss transmission line with leak 
conductance. The BLT equation from the frequency domain to 
time domain is derived to improve the time domain BLT 
equation, and the aim of using the time domain BLT equation 
to calculate load voltage of the transmission line with transient 
signal source, through the calculation results to analyze the 
impact of the dielectric loss. The results showed that the 
attenuation of the terminal load transient response voltage 
occurred when the dielectric loss exists, and this effect is 
nonlinear. 
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I.  INTRODUCTION  

When the high frequency current through the 
transmission line, since the insulating imperfect and there is 
leakage current between conductors, i.e. along the entire 
distribution of the leakage conductance. Usually transient 
signal transmission line are assumed dielectric insulating 
properties is the ideal medium, which can simplify the 
research will undoubtedly increase the possibility of error, 
but guidance on practical problems. In the premise of the 
assumption was no dielectric loss, [1] used in the BLT 
equation of the time-domain response voltage of the terminal 
of the coaxial transmission line were calculated Although it 
is possible to simplify the BLT equation derivation process 
of the time domain and the convenience of calculation, but 
not considering the dielectric loss which spread high 
frequency signal may be generated situation, the time-
domain BLT equation is still not perfect in theory, the lack of 
objective theoretical basis in theory to guide practice. This 
article [1] when the domain BLT equation conduct the 
improved, considering arising from medium leakage drain 
conduction of the case, and based on the transmission line 
terminal response voltage under no dielectric electrical loss 
and dielectric loss situation carried the study, not only to 
improve the BLT equation in the time domain, dielectric loss 
voltage transmission line terminal load transient response. 

 

II. TRANSMISSION LINE TERMINAL RESPONSE 

In the case of assuming loss, Uniform transmission line 
can be used unit length distribution resistance R′ , inductance 

L′  capacitor C ′  of the leakage conductance G′  and s  as 
the ratio of loss to describe skin, For homogeneous loss 
transmission line, the series impedance and shunt admittance 
per unit length in the frequency domain in the form of [1] 

Z sL R sξ′ ′ ′= + + and Y sC G′ ′ ′= +           (1) 
For the inner and outer radii of the a  and b  of the 

coaxial transmission line, the parameter ξ  

0
(1 / 2 ) / (1 / 1 / )b a bξ π μ= +  

The propagation constant of the transmission line can be 
obtained by the above parameters as 

                            ( ) ( )( )s sL R s sC Gγ ξ′ ′ ′ ′= + + +               (2) 
Characteristic impedance 

                           ( ) ( ) /( )
c

Z s sL R s sC Gξ′ ′ ′ ′= + + +             (3) 

Here the Laplace transform variable s jσ ω= +  to define the 

complex frequency. 

A.  transient propagation function 

In the case of low-loss and high-frequency 
1, 1, 1R sL sL G sCξ′ ′ ′ ′ ′   , The square root in the 

propagation constant of (2) can be approximated as 

1 2 3
( ) /s s v a s a aγ ≈ + + +                (4) 

where the following definitions are  used: 

1 2 3
1 / , ( / 2) / , ( / 2) / , ( / 2) /v L C a C L a R C L a G C Lξ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= = = =    

the spectral wave propagation term is 

31 2( ) /( ; )
a xsa x a xs x sx vG s x e e e e eγ −− −− −= ≈               (5) 

using the Laplace transform, we calculate the transient 
propagation function of (5) for /t x v> as 

2

32 1
( ( ) / 4( / )) 3

1
( ; ) /(2 ( / ) )a xa x a x t x vg t x e e e a x t x vπ−− − −= −            

( /t x v> )                                                                               (6)          

B. Surge Impedance and Admittance:  

In the case of low-loss and high-frequency 1R sL′ ′  , 

1sLξ ′  , 1G sC′ ′   the frequency-domain characteristic 
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impedance of (3) may also be approximated as 

( ) (1 )
22 2

c c

GZ s Z
sC

R
sL sL

ξ ′
≈ + + + ′

′
′ ′

                   (7) 

where  /
c

Z L C′ ′= is the high-frequency limit of the 

characteristic impedance of the line. Using the Laplace 

transform, the transient impedance function of (7) is 

  ( )( ) ( ) 2 ( ) 22
c cc c c Z Z tz t Z t Z R L t G CL tδ ξ π+ + Φ′ ′ ′ ′≈ + Φ ′   (8) 

A similar procedure can be used to transform the character- 

istic admittance of the line into the surge admittance ( )
c

y t . 

The result is 

( ) ( ) ( ) 2 2 ( ) 2
c c c c c

y t Y t Y R t L Y L t Y G t Cδ ξ π′ ′ ′ ′ ′≈ − Φ − − Φ    (9) 

where 
1

/
c c

Y Z C L
−

′ ′= =  , ( )tδ is the Unit impulse function, 

( )tΦ is the unit-step function. 

C. Load Reflection Coefficients: 

 The transient reflection coefficients (one for each end of 
the line) are different from the previous line parameters as 
they depend both on the line properties and on the nature of 
the termination impedances. The voltage reflection 
coefficient in the spectral domain for a resistive load is 
approximated as 




( ) (1 / 2 / 2 / 2 )
( )

( ) (1 / 2 / 2 / 2 )

L c L c

L c L c

R Z s R Z R sL sL G sC
s

R Z s R Z R sL sL G sC

ξ
ρ

ξ

′ ′ ′ ′ ′− − + + +
= ≈

′ ′ ′ ′ ′+ + + + +
    (10) 

where
L

R is a terminal impedance of the load, and is assumed 

to be linear. Using the Laplace transform, we obtain the 

spectral representation for the reflection coefficient of (10)as 

2 2
1 2

1 2 8 1 1 9 2 2( ) ( ) (1 ( )) (1 ( ))t tr t b b t b t e erfc t b t e erfc tζ ζδ π ζ ζ π ζ ζ= + − − −  (11) 

Where a number of new parameters are defined as 

  
1 2 3

, ,
2

L c L c c

R
b R Z b R Z b Z

L

′
= − = + =

′
       

     4

4 5 6 1 22

2

, , ( )
2 2

c c

bG
b Z b Z b b b

L C b

ξ ′
= = = +

′ ′
        

                          

3 5 7 6 7 6

7 1 2 8 1 9 22

2 2 1 7 2 1 7

( ), ( ), ( )
b b b b b b

b b b b b
b b b

ζ ζ
ζ ζ ζ ζ

+
= + = + = +

− −
    

2
2

1,2 4 4 2 3 5 2
( 4 ( ) 2 , ( ) 2

t

x

b b b b b b erfc x e dtζ π
∞

−= − ± − + =    

D.  Application to the Time-Domain BLT Equation 

 

 

  Node1                 Excitation                                    Node2 

Figure 1.  Simple transmission-line representation of the coaxial line 

A transient BLT equation of the double-conductor 

transmission line shown in Figure 1 as 

1 1

2

( ) ( ) ( )

( ) 0

v t t r t

v t

δ +
=

  
  

 
2

12

0 ( )( )

( )( ) ( ) ( )

m tmt

m tt r t mtδ
 
∗ +  

1

2

( )

( )

s t

s t

 
∗ 
 

   (12)           

where the symbol ∗ denotes the time-domain convolution 

operator, and 

1 1( ) ( ; ) ( )rz t g t L r t= ∗                                           

2 2( ) ( ; ) ( )rz t g t L r t= ∗                                             

0 1 2( ) ( ) ( )m t rz t rz t≡ ∗                  

0 0 0( ) ( ) ( ) { ( ) ( ) [ ( ) ( ) ( )]}m t t m t t m t t m tδ δ δ= + ∗ + ∗ + ∗ 

                  1 1( ) ( ) ( )m t rz t m t= ∗        

2 2( ) ( ) ( )m t rz t m t= ∗  

                                                                                

Figure 1 here we use a lumped source and the transient 

source vector being expressed as 

1

2

(1/ 2)( ( ) ( ) ( )) ( ; )( )

( ) (1/ 2)( ( ) ( ) ( )) ( ; )

s c s s

s c s s

v t z t i t g t xs t

s t v t z t i t g t L x

− − ∗ ∗
=

+ ∗ ∗ −
  
  

   
 (13)        

Note that the source vector in (13) involves the transient 
propagation function ( ; )g t x  of (6) and uses line propagation 

distances of sx  and sL x− , which are the distances that the 

propagating waves must travel from the source at location 

sx x=  to either end of the line. 

At this point of the analysis, the matrix form of the 
transient-BLT equation (13) is not particularly beneficial for 

the evaluation of the load voltages 1( )v t  and 2 ( )v t . As a 

consequence, we can symbolically solve for these voltages to 
get the following two transient voltage equations to evaluate: 

1 1 1 2 2( ) ( ( ) ( )) ( ) [ ( ) ( ) ( )]v t t r t m t s t rz t s tδ= + ∗ ∗ + ∗  (14a)         
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2 2 1 1 2( ) ( ( ) ( )) ( ) [ ( ) ( ) ( )]v t t r t m t rz t s t s tδ= + ∗ ∗ ∗ +  (14b)                       

III. NUMERICAL EXAMPLE 

Here we filled to the inner and outer conductors’ media 
uniformity of coaxial transmission line, for example, by 
calculating its signal source in a transient excitation terminal 
response to the load voltage to analyze the impact of the 
dielectric loss. With reference to Fig. 2, we assume 
the following parameters for the coaxial line: a = 2.5 mm; b 
= 9.345 mm; c = 9.945 mm; Δ = c −  b = 0.6 mm; 

and 2.5
rel

ε = . With this choice of parameters, the high-

frequency characteristic impedance of the line is 50 Ω. To 
state the difference between the dielectric loss on weak 
conductor and a good conductor, we consider the coaxial 

conductor for tellurium （ 3
5 10 /S mσ = × ） and copper

（
7

5.76 10 /S mσ = × ） both cases. 

 

Figure 2. Coaxial transmission line and its per-unit-length equivalent circuit 
In (For the transmission line, we assume that the total 

length of the line is L = 1m and that the source location is at 

0.2
s

x =  from the left end of the line (see Fig. 1). The load 

impedances of the line are assumed to be resistive, with 

values 
1 1

100
L L

Z R= = Ω and
2 2

10
L L

Z R= = Ω .For a coaxial 

line, the per-unit length line inductance and capacitance and 
dc resistance and shunt conductance parameters as 

0 ln( )
2

b
L

a

μ

π
′ =  and 0

2

ln( / )

relC
b a

πε ε′ = , 

1 1 1
( )

2
R

a bπσ
′ = +

Δ
 and 

2

ln( / )
G

b a

πσ ′
′ =  

Where σ ′ is a leakage of the fill media conductivity, the 
ideal state where 0σ ′ = . 

While the BLT solutions in (14) are expressed in terms of 
both a current and voltage source, only a voltage source is 
considered in this example. The transient waveform 
produced by this source is assumed to be representative of a 
fast pulser having a rise time of the order of 100 ps and a fall 
time of about 4 ns. A reasonable representation of such a 
pulse is given by the expression 

( )

V( ) V (1 ) {0.5 ( ) ( ( ))

[1 0.5 ( )] ( )}

s

f

t t

t s
p s

r

s
s

r

t t
t e erfc t t

t

t t
erfc t t

t

π

π

−
− −

= + Γ × − Φ − −

−
+ − Φ −

where erfc(·) denotes the complementary error function, 
and Φ(·) is the unit step function.4 Using this equation, it is 
found that the following parameters provide a good fit to the 
such a pulser waveform: 
V 10 kV

p
=  and 0.024Γ =  and 100 ps

r
t =  and 0.2 ns

s
t =  

and 4 ns
f

t = ，Fig. 3 illustrates this voltage waveform, 
which is used in the analysis to follow. 
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Figure 3. Voltage source waveform 
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(a) 0 /S mσ ′ =  
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(b)

3
5 10 /S mσ −′ = ×  

Figure 4. Good conductor (copper) coaxially load voltage. (a) No 
dielectric loss; (b) dielectric loss 

Using the transient-BLT equations (14) for the load 
voltages, a direct time-domain solution for the coaxial 
transmission line load voltages has been obtained in Fig. 4. 
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The Fig.4 and Fig.5 illustrates the dielectric loss does 
coaxial terminal load response voltage generated impact 
load response voltage than lossless processed produce 
attenuation in the case of the presence of the dielectric loss.  
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(a) 0 /S mσ ′ =  
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(b) 3

5 10 /S mσ −′ = ×  
Figure 5. Weak conductor (tellurium) coaxial load voltage (a) No dielectric 

loss; (b) dielectric loss 

The Fig.6 illustrates as the drain conductivity increases, 
the voltage of the load # 1 presents nonlinear attenuation, 
and can see the load response of the voltage decay in the 
early（ 10t ns= ）good conductor (copper) coaxially is 
relatively fast; voltage attenuation of substantially the same 
speed and in the load response of the late（ 15t ns= ）
good conductor (copper) and weak conductor (tellurium) 
coaxial. 
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(a) 10t ns=                                   
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(b) 15t ns=  

Figure 6. The coaxially load # 1 voltage electrical conductivity changes 
with the drain 

IV. OBSERVATIONS 

By the above theoretical analysis and numerical 
simulation, we know that due to the dielectric loss caused by 
the leakage of the medium so that the response voltage of the 
coaxial transmission line terminal load attenuation, and this 
attenuation is nonlinear. Good conductor of coaxial 
transmission line, the signal attenuation in the initial 
relatively rapid, while the rate of decay in the late signal is 
substantially the same, the little difference between a good 
conductor with a weak conductor. This requires that we 
better insulation properties of the medium, in the actual 
design of the coaxial transmission line is particularly 
important, especially for a good conductor of coaxial 
transmission line dissemination of high-frequency signals, to 
avoid the dielectric loss of the signal propagating to ensure 
the dissemination of signals authenticity. Although this 
example is based on the coaxial transmission line, but the 
corresponding conclusions can be extended to a uniform 
transmission line, uniform transmission line system design 
has practical significance. 
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