
Model-Based Design of UAV Autopilot Software

Zuo Ming1,Liu Ying1,Qian Yi1, Hu Xiongwen1,
Zhao Xiaochuan1

Beijing Institute of Computer Application
 Beijing, China

zuoming020@gmail.com

Wang Jinhua2
 China academy of ordnance science

Beijing, China

Abstract—This paper presents a Model-Based approach to
develop UAV (Unmanned Aerial Vehicle) autopilot software. It
employs Simulink to design the flight controller, Stateflow to
implement control logic and Matlab coder to automatically
generate embedded C code from the model developed.
Software in the loop (SIL) and hardware in the loop (HIL)
simulations are performed in the laboratory to validate the
software developed. Flight trial cost and risks are minimized
and the design cycles are greatly shortened. The feasibility and
the effectiveness of the approach are verified through results
from lab simulations and field trials.

Keywords-UAV; model-based design; flight control;
simulation)

I. INTRODUCTION (HEADING 1)
Model-based design is a modern design methodology

that enables faster, more cost-effective development of
dynamic systems. Usage of Model-based design in UAV
autopilot design has the potentiality to shorten the design
cycles and reduce the development cost.

Reference [1] proposed an integral model based design
environment for flight control system which emphasized the
utilization of Matlab tools during the earlier stage of the
development. Reference [2-3] modeled the SUAV’s control
logic using Stateflow. Reference [4] generated codes from
Simulink models using the RTW toolkit to conduct numeric
simulations. In [5], HIL simulations were utilized to realize
rapid development of a UAV autopilot system.

This paper presents a Model-Based approach to develop
UAV autopilot software. Modeling and simulation
techniques are combined to accelerate the development.

II. MODEL-BASED DEVELOPMENT AND SIMULATION OF

UAV AUTOPILOT SOFTWARE DESIGN

The model-based design approach to develop UAV
autopilot software is depicted in Fig 1.

A. Build the Algorithm Model
Simulink and Stateflow are utilized to develop attitude,

altitude and throttle controllers and implement flight control
logic and navigation algorithm

Simulink is an environment for multidomain simulation
and Model-Based Design for dynamic and embedded
systems. The attitude controller, altitude controller and
throttle controller of the UAV is developed using Simulink.

Figure 1 The model-base approach to develop UAV Autopilot Software

During a typical UAV mission, there are multiple flight
modes. It requires different control and navigation
algorithms be taken during different flight modes and
complex logics be embodied for mode transmissions. It is
difficult to model these behaviors in Simulink.

Stateflow is a graphic tool based on the finite state
machine theory which model complex control logic in a
natural, readable and understandable way. It is closely
integrated with Matlab\Simulink and suitable to implement
the flight mode control logic and navigation algorithm.

A comprehensive, production grade UAV flight control
system is developed in Simulink/Stateflow, as presented in
Fig 3. All control logics during typical UAV flight missions
are taken into account, including automatic takeoff and
landing. The ThrottleControl, AltitudeControl and
AttitudeControl blocks are simulink subsystems which
model the throttle controller, the altitude controller and
attitude controller respectively. As this paper emphasizes on
the model base design and simulation methodology, the
details of the controllers will not be covered.

The FligthManagement block is a Stateflow block which
implements the flight control logics. The flight modes
include manual flight, automatic takeoff, takeoff waypoints,
waypoints, fly to waypoint, hover, return to launch,
automatic land, and etc, as shown in Fig 2. The rounded
blocks represent different flight modes of the UAV. The
transitions between different flight modes according to user
commands and flight status are represented as arrowed lines
in the chart. The codes on the transition lines indicate the
condition or event that triggers the transition and the action
that should be taken when the transition occurs.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

1174

Figure 2 Top level of the algorithm model

B. Numeric Simulation
Numeric simulations provide a way to analyze and assess

the control effect of the autopilot algorithm during earlier
stage of the development period. A UAV autopilot
simulation system was designed with a numeric simulation
configuration and a hardware-in-the-loop simulation
configuration and it was proved to be accurate and easy to
use. Commercial off-the-shelf flight simulator software were
adopted as flight dynamic modeler as they came with
accurate flight models and detailed three dimensional visual
effects. Developers were relieved from developing the same
functionality in-house which would demand great effort.

The Real-Time Windows Target toolbox of Matlab
provides a real-time engine for executing Simulink models
on Windows PCs and blocks that connect to a range of I/O
boards that are useful for rapid prototyping of UAV autopilot
software. Communication between flight simulators and
Simulink was established with the Packet in and Packet out
blocks to conduct real-time numeric simulations of the
autopilot algorithm. The architecture of the autopilot
simulation system with numeric simulation configuration is
shown in Fig.4.

C. Code Generation
The Matlab code generation tools are capable of

generating embedded C code optimized for specific
hardware directly from Matlab codes and Simulink models.
Code generation effectively avoids the possible introduction
of manually coded errors and increases the reliability of the
code and the consistency between the code implementation
and Simulink model.

As the preparation for code generation, the model and its
configuration should be adjusted to satisfy the requirement of
the code generation tool and the design specification of the
autopilot software, such as discretizing the model according
to the sample time, setting the discrete solver, configuring
the hardware implementation and setting the code style
customization options.

In this paper, sample time is set to 0.02.Hardware
implementation is set to Texas Instrument C2000 as what is

used in the autopilot hardware. The code generation “System
target file” is set to “ert.tlc” that represents “embedded coder
target”.

To start the code generation process, right click the
autopilot subsystem and select “Build subsystem…” in the
context menu.

D. Integrate codes generated with legacy codes
It is not practical or economical to build a model that

includes everything of the autopilot software. For example,
some functionality such as communication protocol
interpreter and specific hardware drivers are easier to write
in C code than model in Simulink. The developer may have
some legacy codes that are ready to use for which no
modeling work need to be done. In the work related to this
paper, DSP processors from Texas Instruments are used as
the onboard computer. TI provides demonstration programs
to accelerate the users’ develop process. Under similar
circumstance, the handwritten C codes are integrated directly
with the code generated.

E. HIL simulations
The integrated code is then planted into the autopilot

hardware and HIL simulations are conducted to validate the
code generated. The architecture of the autopilot simulation
system with hardware-in-the-loop configuration is shown in
Fig.5. The interface program interprets and forwards the
communication packets between the flight simulator and the
autopilot hardware to accomplish the transmission of the
flight state data and flight control actuator commands. Fig.6
shows the hardware configuration used in the HIL simulation:
the three computers, from left to right, are the ground control
station, the program computer and the flight simulator
respectively. The autopilot hardware is in the bottom left
corner.

III. SIMULATION AND EXPERIMENTAL RESULTS

Results from numeric simulations, HIL simulations and
flight trials are compared to verify the effectiveness of the
model-based design methodology presented.

The wind speed is set to 5m/s during numeric simulations
and HIL simulations. The wind intensity measured during
flight trials is 3, which indicates a wind speed of 3.4 – 5.4m/s.
The airframe used in simulations is Great Plane PT-60 of
which the wing span is 1.8 meters and the target airspeed is
set to 70 km/h. The airframe used in flight trials is a 1:3 scale
model of Piper J-3 of which the wing span is 3 meters and
the target airspeed is set to 80km/h.
A screenshot of the flight simulator software taken during
simulation is shown in Fig 7. The flight trajectories of
numeric simulations, HIL simulations and flight trials are
shown in Fig 8-Fig 10. During numeric simulations, the
trajectories are plotted real time in Matlab. The HIL
simulation trajectories are screenshots taken from the ground
control station. The flight trial trajectories are plotted in
Matlab with data recorded during flights by an onboard data
logger.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

1175

-500 -400 -300 -200 -100 0 100 200 300 400 500
-500

-400

-300

-200

-100

0

100

200

300

400

500

East(m)

N
or

th
(m

)

Actual Trajectory
Target Trajectory

Figure 10 Flight trajectory of PiperJ-3, field trial, with wind from the

southwest
As shown in Fig.8–Fig.10, when the airplanes turn from

the upwind side to the downwind side, the trajectories during
the turn fall inside the corner of the desired path and when
the airplanes turn from the downwind side to the upwind side,
the trajectories fall outside the corner. The flight control
software developed shows great consistency during numeric
simulations, HIL simulations and flight trials.

IV. CONCLUSION

The development process of a comprehensive, production
grade UAV flight control system is presented. Embedded
codes are automatically generated from Simulink models.
Numeric and HIL simulations are conducted to verify the
autopilot software. Simulation and field trial results show
that the simulations accurately predict the real-life behavior
of the autopilot software and the code generation process is
effective. The model-based design approach is proved to be
feasible and effective.

REFERENCES
[1] Yang Xiangzhong, Cui Wenge. Research on Flight Control System

Integral Design Based on Model[J]， Journal of System Simulation,
2007, 19(19):4411-4416

[2] Zhang Zhisheng, Chen HuaiMin. The Modeling and Simulation of
SUAV’s Control Logic[J], Fire Control & Command Control, 2010,
35(9):93-97

[3] Li Junmei, Cheng Yongmei,. Research of multi-mode flight
simulation based on Stateflow [J], Application Research of
Computers, 2011, 28(12):4557-4559

[4] Wang Geng, Jia Wei. Implementation of One UAV Flight Control
Testing System Based on Simulink and DSP[J], Journal of Projectiles,
Rockets. Missiles and Guidance, 2008, 28(1):286-288

[5] Widyawardana Adiprawita, Adang Suwandi Ahmad.Hardware In
The Loop Simulator in UAV Rapid Development Life Cycle,
International Conference on Intelligent Unmanned Systems (ICIUS),
2007 Indonesia, 31-36

Figure 3Stateflow chart for the UAV control logic

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

1176

Figure 4 Numeric simulation system architecture

Figure 5 HIL simulation system architecture

Figure 6 Picture of the HIL simulation environment Figure 7 Screenshot of the flight simulator during a simulation

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

1177

-400 -200 0 200 400
-400

-300

-200

-100

0

100

200

300

400

X(East,m)
 (a)

Y
(N

or
th

,m
)

-400 -200 0 200 400
-400

-300

-200

-100

0

100

200

300

400

X(East,m)
 (b)

Y
(N

or
th

,m
)

Figure 8 Flight trajectory of PT-60, numeric simulations:(a)without wind;(b)with wind, 5m/s from the southeast.

 (a) (b)

Figure 9 Flight trajectory of PT-60, HIL simulations : (a)without wind;(b)with wind, 5m/s from the southeast.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

1178

