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Abstract—For the modelling and simulation of complex spatial
multibody systems, the vector bond graph method is proposed.
By the kinematic constraint condation, spatial prismatic joint
can be modeled by vector bond graph. For the algebraic
difficulties brought by differential causality in  system
automatic modeling and simulation, the effective decoupling
method is proposed and the differential causalities in system
vector bond graph model can be eliminated. In the case of
considering EJS, the unified formulae of system state space
equations and constraint forces at joints are derived, which are
easily derived on a computer and very suitable for spatial
multibody systems. As a result, the unified modelling and
simulation for complex spatial multibody systems are realized,
itsvalidity isillustrated by a practical example.
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l. INTRODUCTION

System modeling and simulation are very important to
the control and dynamic design of modern mechanical
systems. For complex spatial multibody systems, e.g. the
spatiadl multibody systems with prismatic joint , deriving
system state space equations and constraint force equations
a joints is a very tedious and erroprone task. Although
different procedures have been proposed to increase the
reliability and efficiency of this process™?, most of them
can not be used to deal with systems that simultaneously
include various physical domainsin a unified manner.

Bond graph techniqueé® was chosen because it is a
computer oriented method which can describe al type of
physical systems, thus alowing a single model to represent
the dynamic interactions of the spatial multibody system
with electrical, hydraulic, pneumatic, and other components.
Compared with scalar bond graph'®, vector bond graph is
more suitable for modelling spatiadd multibody systems
because of its more concise representation mannert*>. But
for spatial multibody systems, the kinematic and geometric
constraints between bodies result in differential causality
loop, and the nonlinear velocity relationship between the
mass center and an arbitrary point on a body leads to the
nonlinear junction strcture. Current vector bond graph
proceduresﬂ“] were found to be very difficult algebraically in
derivation of system state space equations automatically on a
computer.To solve above problems, a more efficient and

practical modelling and simulation procedure for spatial
multibody systems with prismatic joint based on vector bond
graph!” is proposed here.

II.  VECTOR BOND GRAPH MODEL OF SPATIAL
MULTIBODY SYSYEM wiTH PRISMATIC JOINT

In any spatial multi-body system, the joints impose
kinematic constraints on the rigid body elements. A general
rigid body moving in space can be modelled by vector bond
graph!”. The diagram of spatial prismatic joint is shown in
Figure.1, this constraint limits the relative trandation of the

two bodiesB, and B, aong two directions, and limits the

relative rotation of the two bodiesB, and B, aong three

directions. Joint point P and Q are fixed on rigid body
B, and B, respectively, vector /1, is used to describe the

rﬂQ
Where 7" and 7 represent the position vector of joint
point P and Q in globa coordinates respectively,
rf:[xf vy zf]T,r/fz [x/? y/? z/? T a’; and

d /f are two unit vectors fixed on rigid body B 4 » Which are

relative motion of the two rigid bodies, h, =7’ —

al orthogonal to axis, and orthogonal to each other. d, is
the unit vector fixed on rigid body B, aong axis, o’; is
another unit vector fixed on rigidbody B, and paraell to
a’;. d, d' a’}jl and a’/'f are the corresponding

Figure.1 A sketch of prismatic joint
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vectors in body frame. From the Kinematic constraint
condition of prismatic joint!¥, the position constraint
equations can be written as

1T [ 1T 28T 7,0 P
@(dz)(h d; a’ﬁz)= d[f /7{1 _ d/), /4 (r/)’ _ra) :O
= ar?po 2r 2T 4T P
d/t’ ha _d/t’ Aﬂ (rﬂQ _ra )
] (1)
d/?a’(Z a’/;lTAﬁTA“a’;
Q"(d, ,d d},d7)=|d2d, |=| dFATAd, |=0
d7dt| | P A4
2

where A” isthe direction cosin matrix of body B, .

The  corresponding velocity(or angular velocity)
constraint equations can be written as

o"(d,,d}d},d7) =0, ~v,]=0 (3
di'h,+hld;
di'h,+hld}
_ dy AT (¢t -r2)-hldjw,
dF AT (T —FP)-hldiw,
where @), and @, represent the angular velocity vector
of the rigid body determined in global coordinates.

D (h,,dy,d?) =

=0 @

|0 e 4
dy=|dy. 0 | (=12
A, dy 0

The velocity(or angular velocity) constraint equations
shown as Egs.(3) and Egs.(4) can be presented by
vector bond model shown as Figure.2.

The vector bond graph for the rigid body undergoing
spatial motion can be coupled to one another satisfying the
kinematic constraints*? at the interfaces to get the over
system model. But the kinematic constraints result in
differential causality. In the derivation of system state space
equations, the current vector bond graph procedures” were
found to be very difficult algebraicaly. To eiminate the
differential causality, the constraint force vectorsat joints
can be considered as unknown effort source vectors and

()

] == MIF— 1 = MTF =1
b
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1= MIFc— i —=MIF —1
s "

Figure.2 Vector bond graph model of prismatic joint

added to the corresponding O-junctions of the system vector
bond graph model.

Ill.  THE UNIFIED FORMULAE OF SYSTEM STATE SPACE
EQUATIONS AND CONSTRAINT FORCES

The basic field and junction structure of system bond
graph is imposed is shown in Figure.3®, where Euler-

junction structure” (EJS) is added. X , Tepresents energy

vector variable of independent storage energy field

corresponding to independent motion, X represents energy

vector variable of independent storage energy field

corresponding to dependent motion, Z ; and Z[.2 are the

1
corresponding coenergy vector variables. 0, and D..
represent input and output vector variables in resistive field,
Uand Vrepresent input and output vector variables of source

field respectively, U =[U, U,]" V=[V, V,] . Where

U, is known source vector, and U, represents the

constraint force vector of joint. £, and £, are the input

and output vector variables in Euler-junction structure
(BIS .
For independent energy storage field, we have

Z =FX ®)

b yoy

Z =F.X ©)

ip i iy
where £, and £, are
matrices respectively.
For resistive field, we have
D =RD (7

out mn

where R is L X L matrix.
For Euler-junction structure (EJS), we have

E =R.E, ®)

out
where R, is L, X L, matrix®.
The corresponding junction structure equations can be
written as
X =J,Z2, +J. 2 +J, D
1 12 2 T

[t out

the myXm;, and m,Xm,

+ Ji,u,Ul + J[,uZUZ + J[,EE

out

9

Source Field

r LA, ! 1o D
Independent |~ I I
ey s — . Dissipative
Energy 7 Junction Structure .
Storage = Field
Field | 2. | 2. ]
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Figure.3 Basic field and junction structure of system

)(l2 _J%Z +J Z +J D +J U +J U +J £
(10)
D =J, Z +J,, Z, +J,,0,,+J,, U +JLu U,+J,.E,
(11)
2=l g Lo+ D, +dp, Ui+ d, U, +Jd g E
(12)
From the flow summation of O-junctions corresponding
to m, congtraint force vectors in system vector bond graph
model, we have
0= Ja, Zi] + Jaz ZI.Z +J., D0, + qu, U+dJd.E,, (13
By the agebraic manipulation from (5)~(13), the
system state space equations can be written as

If det(7,, ) # 0

X 7;111)(11+7' X; +7:”U +7;MU (a)
)(2 X +T X +T, U+T U, b)) 14
Uy=—T; (Czi,Xi, +7:41 Xzz 7;4_,14, v,) (c)
where
A=l =Ry =y R -y, )_l R ]_l
A, :"/Eill:il +JELR(/1_JLLR) l'-/ Li Fz,

A= JEiJ 'L_iz +Jy, R - ‘/LLR)_l‘/uJ i

A, = JE141 +J R~ JLLR)_l‘/LuI
A = ‘/Eu + "/ELR(/ _JLLR)il"/LuZ
B =(-J,R) (JL +J RAA)

B,=(h—J, R)_l(‘/Lzze +‘/LERE’41A3)
33:(/1 R) (JL +JLER ’41’4)

B, =(h=Jy, R) Uy, F, + R AK)
T,=J, F +J,RB +./,EREA1A

il

.= "/i,iz’L_iz + Ji,LRBZ + Ji,EREA1A3

Lz

L., =, +J, RB+J, R,AA,
L. =, +J,,RB,+J, RAA

ijuy iy

T.=J F+J RB, +J R AA,

oy i i

T. =J F+J RB,+J, ,RAA,

ialp igip" Iy

T, =d,, +J, /?B +J, REAlA

71-'2142 = Jizuz + JizLRB4 + JizEREAlAS
rLE = JCLRB4 + JCEREAlAS
= JCi, E, +J o RB +J R AA

= ‘/CiZEZ +J o RB, +J R AA

Uyl

I =Yeu, T RBy+J o R AA,

uyuy

fJ, =0, J,=0
X, =T X +T X +T U+T, U, (a)

i i

X, =T X +T X +T U,+T, U, (b)

ipi; 7, i

U2=_/-/4 (H1Xi1+h’2)(' +H U+ Cu, ‘1) (c)

L

(15)

where

Hy=do F+Jo FT, +Jo F T,

Hy=do F +Jo T +Jo AT

Hy=dg, +Jo AT, +Jo FT,
H, Jc,, Filo e T,

For the system state space eguations shown as (14) or
(15), giving the initial value of state variable vector )(,.1 ,

X, , the constraint force vector U/, can be obtained from

(14c) or (15¢). Thus (14a) and (14b) or (15a) and (15b) isa
set of first order differential equations, many numerical
solving algorithm that are available can be used. The
corrected adaptive step size Runge-Kutta method based on
MATLAB program!” is emplored here.

IV. EXAMPLE SYSTEM

Figure4 shows a spatiad multibody system. The
components for this example are three rigid bodies, two

revolute joints J,, J, and a prismatic joint J;. These
components are parameterized with the following data
m, =m,=1Kg are the mass of therigid body m, and m,,

L = 1y =1, = 4.167e-4Kgm?® are the principal

moment of inertia of M, and m,. F,=F,=-9.8N are the
m, and m,. M =01 N-m is a moment

weight of
imposed to J;, K =500N/mis spring stfffness, a=0.3m,
b=0.1m, c=0.15m are the distances shown in Figure.4.

Z

Figure4 Spatiad multibody system
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For revolute joint, three translations and two rotational
degrees of freedom are constrainted, leaving only one
Rotation degree of freedom free. From this constraint
condition, its vector bond graph can be obtained. By
assembling the vector bond graph of a single space moving
rigid body, the revolute joints, and the prismatc joint, the
overa system vector bond graph model can be obtained and
shown as Figure.5. The constraint force vectors of joints can

be considered as unknown source vectors, such as Se,, Se

Se,, Se, in Figure.5, and added to the corresponding O-

junctions to eliminate differential causality. As a result, all
differential causalities in this system vector bond graph can
be eliminated, thus the procedure presented here can be used.

In Figure.5, J;Z =[I zz] ,

b .
Jy =diaglly vy 1,],
Jy =diag[ly 1,y 1,4 Fy, s Fp, &€ the mass center
velocity vector of body M, and M, in global coordinates,
wj , wf are the angular velocity vector of body m,; and
m, in body frame respectively.

Inputting the initial values of state variable vector, the
physical parameters of the mechanism, and the coefficent
matrices of (5)~(13) into the program associated with the
procedure presented here based on MATLAB!, the system
responses and the resultant constraint forces at joints are

obtained and shown in Figure.6~Figure.9. These results are
good agreement with that obtained by the procedurein [5].

V. CONCLUSIONS

A general procedure was presented for using vector
bond graph to model spatia multibody systems with
prismatc joint. Compared with standard scalar bond graph
model, the procedure presented here is more concise
Because nonlinear junction structure and differential
causality exit in shch complex systems, current vector bond

I Jlg Se

ol 1

IJ%
o

graph methods are found to be very difficult algebraically in
the derivation of system state space equations. The constraint
force vectors of joints can be considered as unknown source
vectors, and added to the corresponding O-junctions to
eliminate differential causality. In the case of considering
EJS, the unified formulae of system state space equations
and constraint forces at joints are derived, which are easily
derived on a computer and very suitable for spatia
multibody systems. These lead to a more efficient and
practical automated procedure for modelling and simulation
of complex spatial multibody systems over a multi-enegy
domainsin aunified manner.
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Figure.5 Vector bond graph model of system
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Figure.6 Displacement of m,in global X-axis

005

L1F

0af

L2r

0.2af

L3r

03af

0.4
i}

1 2 3 4 5 B 7
Titne #s

Figure.8 Displacement of mpinglobal Z-axis
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Figure.7 Displacement of m,in global Y-axis
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Figure.9 Resultant constraint force at joint J;





