
A New Data Classification Algorithm for Data-Intensive

Computing Environments

Qizhi Deng, Longbo Zhang*, Xin Qian, Yali Chen, Fengying Wang
School of Computer Science

Shandong University of Technology
Zibo 255049, China

E-mail: roger-deng@163.com, zhanglb@sdut.edu.cn, qianzhaoxin163.com, ylchen870329@163.com, wfy@sdut.edu.cn
*Corresponding Author: zhanglb@sdut.edu.cn

Abstract—In order to solve the problem of how to improve the
scalability of data processing capabilities and the data
availability which encountered by data mining techniques for
Data-intensive computing, a new method of tree learning is
presented in this paper. By introducing the MapReduce, the
tree learning method based on SPRINT can obtain a well
scalability when address large datasets. Moreover, we define
the process of split point as a series of distributed computations,
which is implemented with the MapReduce model respectively.
And a new data structure called class distribution table is
introduced to assist the calculation of histogram. Experiments
and results analysis shows that the algorithm has strong
processing capabilities of data mining for data-intensive
computing environments.

Keywords-MapReduce; Data-Intensive; SPRINT; Gini index

I. INTRODUCTION

Data-intensive computing applications become
increasingly widespread; the data mining with large datasets
for data-intensive computing tasks increasingly become a hot
spot. Data-intensive computing tasks typically have the
characteristics of large-scale in data storage (usually to TB or
PB magnitude), dynamic changing, diversity (structure,
semi-structure, unstructured, etc.), etc [1].These features
bring many difficulties in data management operations
across a cluster of commodity machines. With the wide and
growing availability of MapReduce-capable compute
infrastructures, it is necessary to ask whether such
infrastructures could be use in parallelizing common data
mining tasks such as tree learning. For many data mining
operations, MapReduce may offer better scalability with
vastly simplified deployment in a production setting.

MapReduce is a simple model for distributed computing
which can eliminate many complexities such as data
partitioning, handling machine failures, scheduling tasks
across many machines, and performing inter-machine
communication [2]. Despite the growing popularity of
MapReduce [3], its application to certain standard data
mining and machine learning tasks remains poorly
understood. In the paper we only focus on the task of tree
learning. Tree models are used in many applications because
they are interpretable, can handle complex interactions, and
can deal with both ordered and unordered features. At
present, the data mining techniques for data-intensive

computing environment is still infancy; the existing works
mainly focus on building a high efficiency data mining
model through taking advantage of scalability and fault
tolerance of large-scale cluster system [4].

In this paper, we describe our experiences with
developing and deploying a MapReduce based tree learner,
an enhanced algorithm based on SPRINT decision tree
algorithm. This algorithm use a new data structure called
class distribution table, to reduce the complexities of the
select of best split point and the partitions of attribute lists.

II. RELATED WORK

A. Distributed Decision Tree Classifier

Traditional distributed decision tree algorithm has many
limitations due to the data all in memory and does not
consider the actual problem of I/O and load balancing. Mehta
[5] proposed a new decision tree algorithm SLIQ, with some
extents; it overcomes the memory limitation using two data
structures. Shafer et al. proposed the SPRINT algorithm on
the basis of SLIQ and put forward the implementation on the
distributed computing environment [6]. The SPRINT solved
the problem of memory limitations and receives a better
performance on time consuming and scalability than SLIQ.
Caragea proposed a distributed decision tree algorithm-
INDUS [7], on this basis; Dainan put forward a multi-
distribution decision tree algorithm-DDTA (Distributed
Decision Tree Algorithm) [8]. A MapReduce based tree
learning model called PLANET was proposed by Panda [9],
with some extends, it reduces the time consumption, but it
also has the problem of memory limitations.

B. MapReduce Programming Model

This algorithm uses MapReduce [10, 11] to distribute and
scale tree induction to large datasets. MapReduce can be
described by two-phase distributed computation: map phase
and reduce phase. Usually, large dataset partitioned into a set
of disjoint units which are assigned to mapper workers. Each
mapper scans through its assigned data and applies a user-
specified map function to each record. The output of each
mapper is a set of < key, value > pairs which are collected
for Reduce phase. In reduce phase, the key-value pairs are
grouped by key and are distributed to a series of reducer
workers. Each reducer then applies a user-specified function
to all the values for a key and outputs a final value for the
key.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

1351

III. CLASSIFIER OF DATA-INTENSIVE USING MAPREDUCE

Let X={X1, X2,…,XN} be a set of attributes with domains

1 2
, , ...

NX X XD D D respectively. Let Y be an output with

domain DY. Consider a dataset
1

{ (,) |i i i XD x y x D= ∈ ×

2
... , }

NX X i YD D y D× ∈ sampled from an unknown

distribution, where the ith data vector xi has an output yi
associated with it. Given the dataset D, the goal in supervised
learning is to learn a function (or model)

1 2
: X XF D D×

...
NX YD D× → that best approximates the true distribution

of D. If DY is continuous, the learning problem is a
regression problem; if DY is categorical, it is a classification
problem [9].

A. Data Structure

A tree learner is built in two phases: a growth phase and a
prune phase. In the growth phase, the tree is built recursively
by partitioning the data until each partition is either “pure”
(all members belong to the same class) or sufficiently small
(a parameter set by the user) [10]. The form of the split used
to partition the data depends on the type of the attribute used
in the split. Splits for a continuous attribute A is with the
form ()value A x< where x is a value in the domain of A.
Splits for a categorical attribute A are of the form

()va lue A X∈ where ()X d o m a in A⊂ . We consider
only binary splits because they usually lead to more accurate
trees. Some data structures are used in the algorithm, like
follows.

Attribute List ―We also keep attribute list for each
attribute in the data. Entries in these attribute records, which
maintained on disk, consist of an attribute value, a class label,
and the index of the record from which these values were
obtained. Initial lists for continuous attributes are sorted by
attribute value once first created. The initial lists created
from the training set are associated with the root of the
classification tree. As the tree is grown and nodes are split to
create new children, the attribute lists belonging to each node
are partitioned and associated with the children. When a list
is partitioned, the order of the records in the list is preserved;
thus, partitioned lists never require resorting.

Block-Histogram―For this algorithm we also maintain
two histograms. These histograms associated with each tree
node corresponding with the local optimal split point of each
data-block. Then choose the attribute be the best splits
attribute which obtain the minimum gini value. These
histograms also denoted as

aboveC and
belowC are used to

capture the class distribution of the attribute records at a
given node. For categorical attributes also have a histogram
associated with a node. Just like SPRINT, only one
histogram is needed and it contains the class distribution for
each value of the given attribute. We call this histogram a
count matrix. Figure 1 shows the way to calculate of Block-
Histogram.

Histogram―These histograms is different from SPRINT,
it is a new data structure for building classification trees
using MapReduce. Each data block maintain a record like

<row,
aboveC ,

belowC >, the first row number of the data item

in the data block;
belowC maintains this distribution for

attribute records that have already been processed, whereas

aboveC maintains it for those that have not. Each record

represents a distribution of the class label in the data-block.
The block histograms will obtain the initial value using these
histograms which can simplify the complexity of the
algorithm.

Figure 1. The calculation of Block-Histograms.

B. Description

At the heart of the algorithm is a controller method called
BuildClassifier, a single machine that initiates, schedules and
controls the entire tree induction process. In order to control
and coordinate tree construction, the controller method
constructs a tree using a series of MapReduce jobs, each of
which builds different parts of the tree. At any point, a global
TreeModel (TM) is maintained to contain the entire tree
constructed so far.

As tree induction proceeds, the controller method add the
root node into the node queue (NQ) and schedules
MapReduce jobs to find split predicates at the nodes. Once a
MapReduce job completes, the controller method updates
TM with the nodes and their split predicates, and then
updates NQ with new nodes at which split predicates can be
partition. The main process of the algorithm is described as
follows.

Algorithm 1 BuildClassifier
Require: NodeQueue NQ, TreeModel TM, Training record
 (x,y) ∈D, Attribute set Att
1. Troot = new Node
2. Initiate(Troot, D,Att)
3. TM = Troot
4. NQ.push_back(Troot)

5. BuildTree(NQ)

The controller method creates a root node for the tree
model at the beginning; then initiates it with the attribute lists,
and marked with the root node. A global tree node queue NQ
and tree model TM are maintained and initiated with Troot.
Get the first decision-tree node marked Tcurr from NQ, then
build the sub-tree of Tcurr. The details of build tree method
described as follows.

Algorithm 2 BuidTree
Require: NodeQueue NQ, TreeModel TM, Training record
 (x,y) ∈D
1. For All Tcurr∈NQ do
2. If JudgeLeaf(Tcurr) is false then

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

1352

3. bestSplit=FindBestSplit(Tcurr)
4. Tcurr→splitAtt=bestSplit→splitAtt
5. If bestSplit→splitAtt is category then
6. Tcurr→leftAttSet=bestSplit→leftAttSet
7. Tcurr→rightAttSet=bestSplit→rightAttSet
8. Else
9. Tcurr→splitValue=bestSplit→splitValue
10. parationTrainingSet(Tcurr→D, leftD,rightD)
11. remove(Tcurr→splitAtt)
12. Create new node Tleft, Tright
13. Initiate(Tleft, leftD,Att)
14. Initiate(Tright,rightD,Att)
15. Tcurr→left=Tleft
16. Tcurr→right=Tright

17. NQ.push_back(Tleft)
18. NQ.push_back(Tright)
19. Else
20. Tcurr→isLeaf = true
21. Tcurr→label =y //y is the most belonged label

In our tree mode, predicate evaluations at non-leaf nodes
have only two outcomes, leading to binary splits. In the
process of building tree, a judgment is needed at first, if the
judgment is satisfied, the process will be ended and Tcurr will
be marked with the class table as a leaf node. If each
partition of tree node Tcurr is either “pure” (all members
belong to the same class) or sufficiently small (a parameter
set by the user). In Steps 3~10, the split point of each data
nodes is found, the method FindBestSplit is the core
operation of tree generation, we will discuss at next section.
Using FindBestSplit, we will get the best split for Tcurr. Then
remove the split attribute from the attribute set and divide the
attribute lists using the split value. Two tree nodes Tleft, Tright
are created and initiated with the divided attribute lists leftD
and rightD, then pointed as the left node and right node of
Tcurr and put them into the node queue NQ. Until NQ is
empty, the tree model is learned completely.

C. Find Best Split

Finding best split is very similar to the serial algorithm.
In the serial version, processors scan the attribute lists either
evaluating split points for continuous attributes or collecting
distribution counts for categorical attributes. This does not
change in the parallel algorithm, no extra work or
communication is required while each processor is scanning
its attribute-list partitions. We perform N split point parallel
using Mappers, each Mapper independently processing 1/N
of the training data. After that, use Reducer to choose the
split which get the minimum split value.

We use the gini index, originally proposed in [3]. For a
data set D containing examples from n classes, ()G in i D is

defined as 2

1
() 1

n

jj
G in i D P

=
= −  ; where

jP is the

relative frequency of class j in D. If a split divides D into two
subsets D1 and D2, the index of the divided data

()splitG in i D is given by 1
1() ()s p l i t

mG in i D G in i Dm=

2
2()m G in i Dm+ . The advantage of this index is that its

calculation requires only the distribution of the class values
in each of the partitions. The method need to construct the
Block-Histograms for each attribute and Histograms using a

MapReduce job, and then find the best split for each attribute
based on the calculation of gini index. The Mapper phase
and Reducer phase are described as follows.

Algorithm 3 FindBestSplit::Mapper
Require: Current node Tcurr, Attribute set Att, Class set Y
1. For all A ∈ Att do
2. Class Count array countY for Y
3. Index=firstreCord(Tcurr→D)
4. For all (x,y)∈(Tcurr→D,Attribute list of A) do
5. county[findY(Y,y)]++

6. Output((findA(A)),(Index, countY))

Map Phase: Pseudocode used to describe the algorithms that
are executed by each mapper appears in Algorithms 3. Each
mapper collects the class distribution for each ordered
attribute independently. In addition to the above outputs,
each mapper maintains a table of key-value pairs. Keys are
the index of attributes and values are the index of first record
in each block of Tcurr→D and the class distribution array.

Algorithm 4 FindBestSplit::Reducer
Require: Key k, Value Set V, Attribute set Att, Class set Y
1. For All k do
2. If Att[k] is continues then
3. For all distinct value ∈V do
4. If sameBlock(value [i]) then
5. Output((k),(value [i], sumCount(value [i])))

Reduce phase: The reduce phase, which works on the
outputs from the mappers, performs aggregations and
computes the histograms for each available attribute. After
that another MapReduce job is scheduled for the calculation
of gini index, which using the output of this reduce phase.
Finally, each reducer outputs the best split that it has been
used for each tree node. The best split should include the
split attribute, the left and right value set for category
attribute and the split value for continues attribute.

IV. EXPERIMENTAL EVALUATIONS

Experiments based on Hadoop0.20.2 distributed
platforms (nine PC machine), computer configured as CPU
2.93GHz, memory 2G, 150G hard drive, Ubuntu Linux
system. Eclipse 3.3.2 as the development tool. One PC
machine is the Namenode server, and the remaining eight are
Datanode.

A. Datasets for Experiments

An often used benchmark in classification is UCI
databases; however, its largest dataset contains only several
million training examples. We choose KDD-Cup-1999 to be
the training set which contains 4 million training examples
and 40 attributes.

B. Performance Analysis

In order to analyze the performance of the algorithm, we
design the experiments for the time efficiency of the
algorithm, the parallel performance, accuracy, etc. As can be
seen from Figure 2, when the data amount reaches a certain
size, the response time will be apparent below than SPRINT.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

1353

The results show nice time-consuming performance. The
drop in time-consuming is due to the MapReduce. When the
data is larger enough, the data will be split into blocks with
HDFS and processed as parallel. In contrast, the time-
consuming of I/O is larger than the reduced time with
parallel computing.

Figure 2. The comparison of time performance.

Figure 3. The time changing with data nodes number.

Figure 4. Time changing of finding split point and divided attribute list.

Figure 5. Accuracy trends.

Figure 3 shows that, in the case of same size of training
set, the consuming time of the algorithm reduced
significantly with the increasing of data nodes. Figures 4
presents the split point calculation time decrease linearly and
the divided time of attribute lists increase with the number of
data nodes increases. From Figures 5, we know that the

accuracy of the algorithm is little change to SPRINT,
because both of them using precise searching technique.

Through analysis and experimental results, we can know
that the algorithm inherits the accuracy of SPRINT, gets a
highly scalable and able to process large dataset. However,
the division of the attribute lists is relatively complex, which
limit the improvement of performance.

V. CONCLUSION

In this paper, we presented an enhanced algorithm for the
data classification of data-intensive computing environment
based on SPRINT and MapReduce. Combined with the
features of MapReduce, a new data structure is introduced to
assist finding the split point, which can decrease the I/O
consuming and the complexity of algorithm. In some extent,
the data availability problem is solved and it inherits the high
scalability of SPRINT so that it has a strong ability to
process large dataset. But the performance of the tree learner
is not as well as continuous attribute when address category
attribute, therefore, the next work we intends to improve the
efficiency of algorithm through optimize the framework of
the tree learner and the structure of attribute list.

ACKNOWLEDGMENT

The research is supported by the Natural Science
Foundation of Shandong Province of China (Grant No.
ZR2011FL013).

REFERENCES
[1] W. Peng, M. Dan, “Review of Programming Models for Data-

Intensive Computing,” 11th ed., vol.47. Journal of Computer
Research and Development, 2010, pp. 1993-2002.

[2] T. Richard, Kouzes, et al, “The Changing Paradigm of Data-Intensive
Computing” 1th ed., vol.42, Computer, 2009, pp. 26-34.

[3] J. Dean, S. Ghemawat, Mapreduce: Simplified data processing on
large clusters. In Symposium on Operating System Design and
Implementation(OSDI), 2004.

[4] T. Ashish, S. Joydeep, et al, “Hive-A Warehousing Solution Over a
Map-Reduce Framework,” PVLDB, Vol.2, no.2, 2009, pp. 1626-1629.

[5] M. Mehta, R. Agrawal and J. Rissanen, “SLIQ: A fast scalable
classifier for data mining,” Lecture Notes in Computer Science,
Vol.1057, Advances in Database Technology , 1996, pp. 18-32.

[6] J. Shafer, R. Agrawal, M. Mehta, “SPRINT: a Scalable Parallel
Classifier for Data Mining,” //Proceedings of the 22nd VLDB
Conference Mumbai(Bombay). Mumbai M organ Kaufmann, 1996,
pp. 544-555.

[7] D. Caragea, A. Silvescu, “Decision tree induction from distributed
heterogeneous autonomous data sources,” In Proc of the Conference
on intelligent Systems Design and Applications. USA, 2003.

[8] D. Nan, J. Genlin, “Research and Implementation of ID3 Based on
Distributed Database System,” Journal of Nanjing Normal University
(Engineering and Technology), Vol.5, no.4, 2005, pp. 46-48.

[9] P. Biswanath, S. Joshua, et al, “PLANT: Massively Parallel Learning
of Tree Ensembles with MapReduce,” VLDB Endowment, 2009, pp.
24-28.

[10] J. Dean, S. Ghemawat, “MapReduce: a flexible data processing tool.
Commun,” CACM. Vol.1, no.53, 2010, pp. 72-77.

[11] J. Ekanayake, S. Pallickara, “MapReduce for Data Intensive
Scientific Analysis,” Fourth IEEE International Conference on
eScience, 2008, pp. 277-284

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

1354

