
A New Data Classification Algorithm for Data-Intensive  

Computing Environments 
 

Qizhi Deng, Longbo Zhang*, Xin Qian, Yali Chen, Fengying Wang  
School of Computer Science 

Shandong University of Technology 
Zibo 255049, China 

E-mail: roger-deng@163.com, zhanglb@sdut.edu.cn, qianzhaoxin163.com, ylchen870329@163.com, wfy@sdut.edu.cn 
*Corresponding Author: zhanglb@sdut.edu.cn 

 
 

Abstract—In order to solve the problem of how to improve the 
scalability of data processing capabilities and the data 
availability which encountered by data mining techniques for 
Data-intensive computing, a new method of tree learning is 
presented in this paper. By introducing the MapReduce, the 
tree learning method based on SPRINT can obtain a well 
scalability when address large datasets. Moreover, we define 
the process of split point as a series of distributed computations, 
which is implemented with the MapReduce model respectively.  
And a new data structure called class distribution table is 
introduced to assist the calculation of histogram. Experiments 
and results analysis shows that the algorithm has strong 
processing capabilities of data mining for data-intensive 
computing environments.   
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I.  INTRODUCTION 

Data-intensive computing applications become 
increasingly widespread; the data mining with large datasets 
for data-intensive computing tasks increasingly become a hot 
spot. Data-intensive computing tasks typically have the 
characteristics of large-scale in data storage (usually to TB or 
PB magnitude), dynamic changing, diversity (structure, 
semi-structure, unstructured, etc.), etc [1].These features 
bring many difficulties in data management operations 
across a cluster of commodity machines. With the wide and 
growing availability of MapReduce-capable compute 
infrastructures, it is necessary to ask whether such 
infrastructures could be use in parallelizing common data 
mining tasks such as tree learning. For many data mining 
operations, MapReduce may offer better scalability with 
vastly simplified deployment in a production setting.  

MapReduce is a simple model for distributed computing 
which can eliminate many complexities such as data 
partitioning, handling machine failures, scheduling tasks 
across many machines, and performing inter-machine 
communication [2]. Despite the growing popularity of 
MapReduce [3], its application to certain standard data 
mining and machine learning tasks remains poorly 
understood. In the paper we only focus on the task of tree 
learning. Tree models are used in many applications because 
they are interpretable, can handle complex interactions, and 
can deal with both ordered and unordered features. At 
present, the data mining techniques for data-intensive 

computing environment is still infancy; the existing works 
mainly focus on building a high efficiency data mining 
model through taking advantage of scalability and fault 
tolerance of large-scale cluster system [4].  

In this paper, we describe our experiences with 
developing and deploying a MapReduce based tree learner, 
an enhanced algorithm based on SPRINT decision tree 
algorithm. This algorithm use a new data structure called 
class distribution table, to reduce the complexities of the 
select of best split point and the partitions of attribute lists.  

II. RELATED WORK 

A. Distributed Decision Tree Classifier 

Traditional distributed decision tree algorithm has many 
limitations due to the data all in memory and does not 
consider the actual problem of I/O and load balancing. Mehta 
[5] proposed a new decision tree algorithm SLIQ, with some 
extents; it overcomes the memory limitation using two data 
structures. Shafer et al. proposed the SPRINT algorithm on 
the basis of SLIQ and put forward the implementation on the 
distributed computing environment [6]. The SPRINT solved 
the problem of memory limitations and receives a better 
performance on time consuming and scalability than SLIQ. 
Caragea proposed a distributed decision tree algorithm-
INDUS [7], on this basis; Dainan put forward a multi-
distribution decision tree algorithm-DDTA (Distributed 
Decision Tree Algorithm) [8]. A MapReduce based tree 
learning model called PLANET was proposed by Panda [9], 
with some extends, it reduces the time consumption, but it 
also has the problem of memory limitations. 

B. MapReduce Programming Model 

This algorithm uses MapReduce [10, 11] to distribute and 
scale tree induction to large datasets. MapReduce can be 
described by two-phase distributed computation: map phase 
and reduce phase. Usually, large dataset partitioned into a set 
of disjoint units which are assigned to mapper workers. Each 
mapper scans through its assigned data and applies a user-
specified map function to each record. The output of each 
mapper is a set of < key, value > pairs which are collected 
for Reduce phase. In reduce phase, the key-value pairs are 
grouped by key and are distributed to a series of reducer 
workers. Each reducer then applies a user-specified function 
to all the values for a key and outputs a final value for the 
key.  
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III. CLASSIFIER OF DATA-INTENSIVE USING MAPREDUCE 

Let X={X1, X2,…,XN} be a set of attributes with domains 

1 2
, , ...

NX X XD D D respectively. Let Y be an output with 

domain DY. Consider a dataset 
1

{ ( , ) |i i i XD x y x D= ∈ ×  

2
... , }

NX X i YD D y D× ∈ sampled from an unknown 

distribution, where the ith data vector xi has an output yi 
associated with it. Given the dataset D, the goal in supervised 
learning is to learn a function (or model) 

1 2
: X XF D D×  

...
NX YD D× → that best approximates the true distribution 

of D. If DY is continuous, the learning problem is a 
regression problem; if DY is categorical, it is a classification 
problem [9]. 

A. Data Structure 

A tree learner is built in two phases: a growth phase and a 
prune phase. In the growth phase, the tree is built recursively 
by partitioning the data until each partition is either “pure” 
(all members belong to the same class) or sufficiently small 
(a parameter set by the user) [10]. The form of the split used 
to partition the data depends on the type of the attribute used 
in the split. Splits for a continuous attribute A is with the 
form ( )value A x<  where x is a value in the domain of A. 
Splits for a categorical attribute A are of the form 

( )va lue A X∈  where ( )X d o m a in A⊂ . We consider 
only binary splits because they usually lead to more accurate 
trees. Some data structures are used in the algorithm, like 
follows. 

Attribute List ―We also keep attribute list for each 
attribute in the data. Entries in these attribute records, which 
maintained on disk, consist of an attribute value, a class label, 
and the index of the record from which these values were 
obtained. Initial lists for continuous attributes are sorted by 
attribute value once first created. The initial lists created 
from the training set are associated with the root of the 
classification tree. As the tree is grown and nodes are split to 
create new children, the attribute lists belonging to each node 
are partitioned and associated with the children. When a list 
is partitioned, the order of the records in the list is preserved; 
thus, partitioned lists never require resorting. 

Block-Histogram―For this algorithm we also maintain 
two histograms. These histograms associated with each tree 
node corresponding with the local optimal split point of each 
data-block. Then choose the attribute be the best splits 
attribute which obtain the minimum gini value. These 
histograms also denoted as 

aboveC  and 
belowC are used to 

capture the class distribution of the attribute records at a 
given node. For categorical attributes also have a histogram 
associated with a node. Just like SPRINT, only one 
histogram is needed and it contains the class distribution for 
each value of the given attribute. We call this histogram a 
count matrix. Figure 1 shows the way to calculate of Block-
Histogram. 

Histogram―These histograms is different from SPRINT, 
it is a new data structure for building classification trees 
using MapReduce. Each data block maintain a record like 

<row, 
aboveC , 

belowC >, the first row number of the data item 

in the data block; 
belowC  maintains this distribution for 

attribute records that have already been processed, whereas 

aboveC  maintains it for those that have not. Each record 

represents a distribution of the class label in the data-block. 
The block histograms will obtain the initial value using these 
histograms which can simplify the complexity of the 
algorithm. 

 
Figure 1.  The calculation of Block-Histograms.  

B. Description 

At the heart of the algorithm is a controller method called 
BuildClassifier, a single machine that initiates, schedules and 
controls the entire tree induction process. In order to control 
and coordinate tree construction, the controller method 
constructs a tree using a series of MapReduce jobs, each of 
which builds different parts of the tree. At any point, a global 
TreeModel (TM) is maintained to contain the entire tree 
constructed so far.  

As tree induction proceeds, the controller method add the 
root node into the node queue (NQ) and schedules 
MapReduce jobs to find split predicates at the nodes. Once a 
MapReduce job completes, the controller method updates 
TM with the nodes and their split predicates, and then 
updates NQ with new nodes at which split predicates can be 
partition. The main process of the algorithm is described as 
follows. 
 
Algorithm 1 BuildClassifier
Require: NodeQueue NQ, TreeModel TM, Training record 
 (x,y) ∈D, Attribute set Att 
1. Troot = new Node 
2. Initiate(Troot, D,Att)  
3. TM = Troot 
4. NQ.push_back(Troot) 

5. BuildTree(NQ)
 

The controller method creates a root node for the tree 
model at the beginning; then initiates it with the attribute lists, 
and marked with the root node. A global tree node queue NQ 
and tree model TM are maintained and initiated with Troot. 
Get the first decision-tree node marked Tcurr from NQ, then 
build the sub-tree of Tcurr. The details of build tree method 
described as follows. 

 
Algorithm 2 BuidTree
Require: NodeQueue NQ, TreeModel TM, Training record 
 (x,y) ∈D 
1. For All Tcurr∈NQ do 
2. If JudgeLeaf(Tcurr) is false then 
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3.     bestSplit=FindBestSplit(Tcurr) 
4.     Tcurr→splitAtt=bestSplit→splitAtt 
5.     If bestSplit→splitAtt is category then 
6.         Tcurr→leftAttSet=bestSplit→leftAttSet 
7.         Tcurr→rightAttSet=bestSplit→rightAttSet 
8.     Else 
9.         Tcurr→splitValue=bestSplit→splitValue 
10.     parationTrainingSet(Tcurr→D, leftD,rightD) 
11.     remove(Tcurr→splitAtt) 
12.     Create new node Tleft, Tright 
13.     Initiate(Tleft, leftD,Att) 
14.     Initiate(Tright,rightD,Att) 
15.     Tcurr→left=Tleft 
16.     Tcurr→right=Tright 

17.     NQ.push_back(Tleft) 
18.     NQ.push_back(Tright) 
19. Else 
20.     Tcurr→isLeaf = true 
21.    Tcurr→label =y //y is the most belonged label 
 

In our tree mode, predicate evaluations at non-leaf nodes 
have only two outcomes, leading to binary splits. In the 
process of building tree, a judgment is needed at first, if the 
judgment is satisfied, the process will be ended and Tcurr will 
be marked with the class table as a leaf node. If each 
partition of tree node Tcurr is either “pure” (all members 
belong to the same class) or sufficiently small (a parameter 
set by the user). In Steps 3~10, the split point of each data 
nodes is found, the method FindBestSplit is the core 
operation of tree generation, we will discuss at next section. 
Using FindBestSplit, we will get the best split for Tcurr. Then 
remove the split attribute from the attribute set and divide the 
attribute lists using the split value. Two tree nodes Tleft, Tright 
are created and initiated with the divided attribute lists leftD 
and rightD, then pointed as the left node and right node of 
Tcurr and put them into the node queue NQ. Until NQ is 
empty, the tree model is learned completely. 

C. Find Best Split 

Finding best split is very similar to the serial algorithm. 
In the serial version, processors scan the attribute lists either 
evaluating split points for continuous attributes or collecting 
distribution counts for categorical attributes. This does not 
change in the parallel algorithm, no extra work or 
communication is required while each processor is scanning 
its attribute-list partitions. We perform N split point parallel 
using Mappers, each Mapper independently processing 1/N 
of the training data. After that, use Reducer to choose the 
split which get the minimum split value.  

We use the gini index, originally proposed in [3]. For a 
data set D containing examples from n classes, ( )G in i D  is 

defined as 2

1
( ) 1

n

jj
G in i D P

=
= −  ; where 

jP  is the 

relative frequency of class j in D. If a split divides D into two 
subsets D1 and D2, the index of the divided data 

( )splitG in i D  is given by 1
1( ) ( )s p l i t

mG in i D G in i Dm=  

2
2( )m G in i Dm+ . The advantage of this index is that its 

calculation requires only the distribution of the class values 
in each of the partitions. The method need to construct the 
Block-Histograms for each attribute and Histograms using a 

MapReduce job, and then find the best split for each attribute 
based on the calculation of gini index. The Mapper phase 
and Reducer phase are described as follows. 

 
Algorithm 3 FindBestSplit::Mapper 
Require:  Current node Tcurr, Attribute set Att, Class set Y 
1. For all A ∈ Att do 
2.     Class Count array countY for Y 
3.     Index=firstreCord(Tcurr→D) 
4.     For all (x,y)∈(Tcurr→D,Attribute list of A) do 
5.         county[findY(Y,y)]++ 

6.     Output((findA(A)),( Index, countY)) 
 
Map Phase: Pseudocode used to describe the algorithms that 
are executed by each mapper appears in Algorithms 3.  Each 
mapper collects the class distribution for each ordered 
attribute independently.  In addition to the above outputs, 
each mapper maintains a table of key-value pairs. Keys are 
the index of attributes and values are the index of first record 
in each block of Tcurr→D and the class distribution array. 
 
Algorithm 4 FindBestSplit::Reducer 
Require:  Key k, Value Set V, Attribute set Att, Class set Y 
1. For All k do 
2.     If Att[k] is continues then 
3.         For all distinct value ∈V do 
4.             If sameBlock(value [i]) then 
5.                 Output((k),( value [i], sumCount(value [i])))
 
Reduce phase: The reduce phase, which works on the 
outputs from the mappers, performs aggregations and 
computes the histograms for each available attribute.  After 
that another MapReduce job is scheduled for the calculation 
of gini index, which using the output of this reduce phase. 
Finally, each reducer outputs the best split that it has been 
used for each tree node. The best split should include the 
split attribute, the left and right value set for category 
attribute and the split value for continues attribute. 

IV. EXPERIMENTAL EVALUATIONS 

Experiments based on Hadoop0.20.2 distributed 
platforms (nine PC machine), computer configured as CPU 
2.93GHz, memory 2G, 150G hard drive, Ubuntu Linux 
system. Eclipse 3.3.2 as the development tool. One PC 
machine is the Namenode server, and the remaining eight are 
Datanode. 

A. Datasets for Experiments 

An often used benchmark in classification is UCI 
databases; however, its largest dataset contains only several 
million training examples. We choose KDD-Cup-1999 to be 
the training set which contains 4 million training examples 
and 40 attributes. 

B. Performance Analysis 

In order to analyze the performance of the algorithm, we 
design the experiments for the time efficiency of the 
algorithm, the parallel performance, accuracy, etc. As can be 
seen from Figure 2, when the data amount reaches a certain 
size, the response time will be apparent below than SPRINT. 
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The results show nice time-consuming performance. The 
drop in time-consuming is due to the MapReduce. When the 
data is larger enough, the data will be split into blocks with 
HDFS and processed as parallel. In contrast, the time-
consuming of I/O is larger than the reduced time with 
parallel computing.  

 
Figure 2.  The comparison of time performance. 

 
Figure 3.  The time changing with data nodes number. 

 
Figure 4.  Time changing of finding split point and divided attribute list. 

 
Figure 5.  Accuracy trends. 

Figure 3 shows that, in the case of same size of training 
set, the consuming time of the algorithm reduced 
significantly with the increasing of data nodes. Figures 4 
presents the split point calculation time decrease linearly and 
the divided time of attribute lists increase with the number of 
data nodes increases. From Figures 5, we know that the 

accuracy of the algorithm is little change to SPRINT, 
because both of them using precise searching technique. 

Through analysis and experimental results, we can know 
that the algorithm inherits the accuracy of SPRINT, gets a 
highly scalable and able to process large dataset. However, 
the division of the attribute lists is relatively complex, which 
limit the improvement of performance. 

V. CONCLUSION 

In this paper, we presented an enhanced algorithm for the 
data classification of data-intensive computing environment 
based on SPRINT and MapReduce. Combined with the 
features of MapReduce, a new data structure is introduced to 
assist finding the split point, which can decrease the I/O 
consuming and the complexity of algorithm. In some extent, 
the data availability problem is solved and it inherits the high 
scalability of SPRINT so that it has a strong ability to 
process large dataset. But the performance of the tree learner 
is not as well as continuous attribute when address category 
attribute, therefore, the next work we intends to  improve the 
efficiency of algorithm through optimize the framework of 
the tree learner and the structure of attribute list.  
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