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Abstract—A three-stage-structured prey-predator model with 
multi-delays is considered. The characteristic equations and 
local stability of the equilibrium are analyzed, and the 
conditions for the positive equilibrium occurring Hopf 
bifurcation are obtained by applying the theorem of Hopf 
bifurcation. Finally, numerical examples and brief conclusion 
are given. 
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I.  INTRODUCTION 

In the natural world, there are many species whose 
individual members have a life history that takes them 
through two stages|immature and mature. Aiello and 
Freedman [1] introduced a single-species stage-structured 
model with time delay in 1990, and they demonstrated the 
existence and uniqueness of positive equilibrium of the 
model, which is globally asymptotically stable. Two-stage-
structured models have received much attention in the last 20 
years [2-4]. In these papers, the authors assume that the life 
history of each population is divided into distinctive stages: 
the immature and mature members of the population, where 
only the mature member can reproduce themselves. However, 
in the nature many species go through three life stages: 
immature, mature and old. For example, many female 
animals lose reproductive ability when they are old. 

A three-stage-structured single-species growth model 
was studied by S.J. Gao [5], the conditions for stability of 
equilibrium and the sufficient conditions for the existence of 
a globally asymptotically stable of positive equilibrium of 
the model are obtained. However, delays play an important 
role in the dynamics of populations. Naturally occurring 
complex dynamics are often naturally generated by well 
formulated delay differential equations (DDE) models. In 
many processes of the real word, especially, in many 
biological phenomena, the present dynamics, the present rate 
of change of the state variables depends not only on the 
present state of the processes but also on the history of the 
phenomenon, i. e. on past values of the state variables. A 
delayed single species with three life history stage and 
cannibalism model have considered by S.J. Gao [6] and it is 
shown that the stability of the positive equilibrium can 

change a finite number of times at most as time delay is 
increased for some parameter values. 

But, there are few papers study the three-stage-structured 
predator-prey system with delays. A nonautonomous three-
stage-structured predator-prey system with time delay have 
considered by S.J. Yang and B. Shi [7], and the existence of 
a positive periodic solution is obtained, by using the 
continuation theorem of coincidence degree theory. Recently, 
a three-stage-structured prey-predator system with predator 
density dependent is studied by S.Y. Li and X.G. Xue [8], 
the conditions for the positive equilibrium occurring Hopf 
bifurcation is obtained and numerical examples are given.  

In this paper, we consider following three-stage-
structured prey-predator model with multi-delays 
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where ( )( 1,2,3)ix t i =  are the densities of immature preys, 
mature preys and old preys at time t , ( )y t  is the density of 
predator at time t , respectively. All of the parameters are 
positive, α  is the birth rate of mature population, and 

1 1, ,bγ θ  are the death rate of immature, mature and old prey 
population, respectively. Ω  and a  are the maturity rate and 
ageing rate of the prey population, respectively. η  and f  
are the density dependent coefficients of immature prey 
population and predator population, respectively. 

(0 1)k k< <  is the rate of conversing prey into predator and 
E  is the predation coefficient. τ  is the desinty dependent 
delay and gestation delay for predator population. 

Note that in (1), the first and the second equations are 
independent of the third equation, the asymptotic behavior of 

3 ( )x t  is dependent on that of 2 ( )x t . Therefore, we just need 
to study following subsystem 
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where 1 1, aγ γ θ θ= + Ω = + , The initial conditions for (2) 
are 
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1 1 2 2 3( ) ( ) 0, ( ) ( ) 0, ( ) ( ) 0, [ ,0]x t t x t t y t t tφ φ φ τ= ≥ = ≥ = ≥ ∈ − . 

II. STBILITY ANALYSIS AND HOPF BIFURCATION  

A. Local Stability Analysis 
Obviously, (2) has two boundary equilibrium 

0 (0,0,0)E = , 1 1 2( , ,0)E x x  (if condition 1C  holds), and a 
unique positive equilibrium * * *

2 1 2( , , )E x x y  (if condition 2C  
holds), where *

1 2 1: 0,  : 0,C C kEx dα γθΩ − > − >  

1 2 1
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−Ω − + Ω= = =
+

 

Let 1 2( , , )E x x y=  be any arbitrary equilibrium. The 
linearized equations about E  are  
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and the characteristic equation about E  is given by 
det( ) 0A Be Iλτ λ−+ − =                         (4) 

(i) From (4), the characteristic equation about 0E  is 
given by 

0

det 0 0

0 0 d

γ λ α
θ λ

λ

− − 
 Ω − − = 
 − − 

. 

Namely 
2( )[ ( ) ] 0dλ λ γ θ λ γθ α+ + + + − Ω = . 

Then 3 0dλ = − < , and 1 2,λ λ  are the two other roots of  
2 ( ) 0λ γ θ λ γθ α+ + + − Ω = . By Routh-Hurwitz criterion, 

0E  is local stable if γθ α> Ω , local unstable if γθ α< Ω  
and 1E exist. 

(ii) From (4), the characteristic equation about 1E  is 
given by 
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Namely 
2

1 1 1( )[ ( 2 ) ] 0d kEx e x xλτλ λ γ θ η λ θη−+ − + + + + = . 

Then, 1 2,λ λ  are the two roots of  
2

1 1( 2 ) 0x xλ γ θ η λ θη+ + + + = , 

with negative real parts, and 3λ is the root of 

1 0d kEx e λτλ −+ − = , then 1E  is local stable if 1kEx d< , 
local unstable if 1kEx d>  and  2E  exist. 

From (i) and (ii), we have the following result. 
Theorem 1. (i)  0E  is local stable if γθ α> Ω , local 
unstable if γθ α< Ω  and 1E  exist. 

(ii) 1E  is local stable if 1kEx d< , local unstable if  

1kEx d>  and  2E  exist. 

B. Existence of Hopf Bifurcation 
The characteristic equation about the positive 

equilibrium 2E  is given by 
* * *
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*
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When 0τ = , (5) becomes to 
3 2
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Note that 

2 2 1 1 0 0

* * * * 2 * *
1 1

  ( )( ) ( )

{[2 ( 2 )] ( ) } 0

m n m n m n
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By Routh-Hurwits criterion, all roots of (6) have negative 
real parts. Then, the equilibrium 2E  is local stable. 

Suppose i ( 0)λ ω ω= >  is a root of (5) and separating 
the real and imaginary parts, we have 

2 2
2 0 0 2 1

3 2
1 1 0 2

( ) cos sin ,

cos ( )sin ,

m m n n n
m n n n

ω ω ωτ ω ωτ
ω ω ω ωτ ω ωτ
 − = − +


− = − −
       (7) 

From (7), one can get that  
2 2 2 2 2 2 3 2

0 2 1 2 0 1( ) ( ) ( )n n n m m mω ω ω ω ω− + = − + − . 

Namely  
6 4 2 0p q rω ω ω+ + + = ,                       (8) 

where  
2 2
2 1 22 0p m m n= − − > , 

2 2
1 2 0 1 2 02 2q m n n n m m= + − − ,                  (9) 
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2 2 * * 2 *
0 0 1 0 0( )[ (2 ) ]r m n x m n d fy kE yθ η= − = + + − ,   (10) 

If * 2 *
3 : (2 )C d fy kE yη + <  hold, from (10) we know 
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(11) 
Let ( ) ( ) i ( )vλ τ τ ω τ= +  be the roots of (5) such that 

when nτ τ=  satisfying ( ) 0nv τ =  and 0( )nω τ ω= . We can 
claim that 

0
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In fact, differentiating two sides of (5) with respect to τ , 
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where 2 2 2 2 2
0 0 2 0 1 0[( ) ( ) ] 0n n nω ω ωΨ = − + > . Since 0p >  and 

0r < , then 

0 0i
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according to the Hopf bifurcation theorem for functional 
differential equations [9], we have the following result. 

Theorem 2. If * 2 *
3 : (2 )C d fy kE yη + <  holds, then (i) 

There exists a 0τ , when 0[0, )τ τ∈  the positive equilibrium 

2E of (2) is asymptotically stable and unstable when 0τ τ> . 

(ii) If * 2 *
3 : (2 )  and 0C d fy kE y qη′ + < >  holds, system 

(2) can undergo a Hopf bifurcation at the positive 
equilibrium 2E  when ( 0,1, 2, )n nτ τ= =  , where nτ  is 
defined by (11). 

Remark 1. It must be pointed out that Theorem 2 can not 
determine the stability and the direction of bifurcating 
periodic solutions, that is, the periodic solutions may exists 
either for 0τ τ>  or for 0τ τ< , near 0τ . To determine the 
stability, direction and other properties of bifurcating 
periodic solutions, the normal form theory and center 
manifold argument should be considered [10]. 

III. NUMERICAL SIMULATION 

We consider following three-stage-structured system 
with time delay 

2
1 2 1 1 1

2 1 2
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x t x t x t x t x t y t
x t x t x t
y t y t x t y t y t y tτ τ τ
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Figure 1.  The Nyquist plot of 3( ,3.7) / (1 )D i iω ω+  and 

3( ,3.8) / (1 )D i iω ω+ , show that positive equilibrium point of (12) are 
asymptotically stable for 03.7τ τ= <  ((a) and (a)’) and unstable for 

03.8τ τ= >  ((b) and (b’)) 

where 1 12.8, 0.2, 1.3, 0.25, 2, 0.35,Eα γ η θ= = Ω = = = =  
0.5, 0.85, 0.2, 0.8, (0) (1,1,1)a k d f X= = = = = . System (12) 

has unique positive equilibrium point 2 (0.73,1.12,1.3)E = . 
We evaluate that 0 029.4, -7.3, 0.415, 3.75p r ω τ= = = ≈ . 
The the positive equilibrium point 2E  is asymptotically 
stable when 03.7τ τ= < . Because the Nyquist plot [11] of 

3( ,3.7) / (1 )D i iω ω+  does not encircle the origin of the 
complex plane (Fig.1(a) and Zoom around the origin of the 
Nyquist plot (a’)) and the time-series plot are showed (Fig.2 
(a)). When 03.8τ τ= > , the positive equilibrium point 2E  is 
unstable. Because the Nyquist plot of 3( ,3.8) / (1 )D i iω ω+  
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encircles the origin of the complex plane (Fig.1(b) and Zoom 
around the origin of the Nyquist plot (b’)) and the Hopf 
bifurcation occurring around the positive equilibrium 2E  are 
shown (Fig.2 (b)). The bifurcating periodic solution (limit 
cycle) of (12) are stable when τ  from 3.81  to 10  and the 
amplitudes of period oscillatory are increasing as time delays 
increased. But, too large time delay would make the 
population to be die out, because the population very close to 
zero (Fig.3) as time delay increase to some critical value. 

 
Figure 2.  The time-series plot show that positive equilibrium point 2E of 

(12) are: (a) asymptotically stable for 03.7τ τ= <  and  (b) Hopf 
bifurcation for 03.8τ τ= > . 

IV. CONCLUSION  

In this paper, we consodered a multi-delayed three-stage-
structured prey-predator system and analyzed the stability 
and the characteristic equations of the equilibrium, obtained 
the conditions of the positive equilibrium occurring Hopf 
bifurcation. Numerical examples by Nyquist plot and time-
series plot, shown that the system considered local 
asymptotically stable when 0τ τ< , stable Hopf bifurcation 
periodic solutions when 0τ τ>  and τ  near 0τ . That is to say, 
time delays can make the positive equilibrium lose stability. 
It is shown that populations can be coexistence with periodic 
fluctuating under some conditions and such fluctuation are 
caused by the time delays. The bifurcating periodic solution 
(limit cycle) are stable when τ  from 3.81  to 10  and the 
amplitudes of period oscillatory are increasing as time delays 
increased. But, too large time delay would make the 
population to be die out, because the population arbitrary 
close to zero as time delay increase to some critical value. 
These are very interesting in mathematics and biology. 
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Figure 3.  Limit cycles of (12) when 3.81, 4,7,10τ = . 
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