
The SaaS Applied in Oilfield Software

Sun Lei, Li Zhuo
College of Geophysics and Information Engineering

China University of Petroleum
Beijing, China

e-mail: sunlei@cup.edu.cn, lizhuocup@gmail.com

Abstract— With the rapid development of the software
industry in the 21st century, the traditional software is
increasingly constrained by the costs and software and
hardware environment. As a result, the SaaS emerged and
quickly gained public acceptance. In order to use SaaS services,
the users don’t have to cost a lot of money to purchase entire
software, only need to pay for the corresponding modules they
ordered. By analysis of current oilfield software, we present a
software layout mode which combines C/S and B/S model, and
solve a series of problems in data storage and interaction,
finally implement a SaaS framework in oilfield software
industry.

Keywords- oilfield software, SaaS, on-demand order, service

I. INTRODUCTION

Since the beginning of the 21st century, the Internet
technology development has exploded. With the rapid
development in internet software and hardware technology,
application software technology is becoming riper. In this
background, SaaS (Software as a Service) emerged as a
completely new type of software application mode [1]. It
brings an impact to the traditional software mode, brings
fresh blood to the software world, leads a new direction for
the future development of software, and makes cloud
computing a hot topic.

Behind the hot debate of SaaS and cloud computing, we
notice that at present the most applications of SaaS are ERP
（Enterprise Resource Planning） and CRM (Customer
Relationship Management) software which are used by a
large number companies and people and have strong
universality. In these applications, customers' functional
requirements are more or less the same; just have some small
differences in the number of modules and the relationship
between modules. Thus we can know that if a kind of
software can be transformed into SaaS service, it must have
some generality and the services it provides must be able to
meet the needs of many users [2]. In the oilfield software
industry, we meet the same condition. We can construct a
public platform providing these general services, and
integrate the service modules into one platform software.
Users can choose modules which they want and obtain
service through the internet, and they only need pay for what
they choose.

II. MAIN FRAMEWORK

With the rapid development of internet, SaaS owns the
hardware foundation of being widely spread. Our client can
completely utilize the ubiquitous Internet, to access the
resources we need anytime, anywhere. Using LAN (Local
area Network) to deploy software which is traditional is
being impacted by the Internet technology. Our SaaS
implementation uses the Internet which data transmission
and operation based on. That is, the whole process that users
use services of the SaaS depends on the Internet.

The data transmission uses Microsoft’s distributed
processing way, Remoting [3]. Remoting is an upgrade of
DCOM (Distributed Component Object Model) and have
many promotions. It can work well with the .NET platform.
Remoting technology supplies a framework which allows
object interacting with another object through the application
domain. Through the framework, we can access the objects
in the application domain, whether objects are in one process
or not, even in separate computer. In this way, the client can
access server’s application interface remotely through .NET
Remoting technology.

In our system, the customers use client to connect with
server, and the data flows in the internet through Remoting
technology. The customer data is stored in the SaaS
provider's database server so they don’t have to worry about
the problems of the database, server, etc. When customer
wants to get services provided by SaaS, they can easily
purchase via the order system and obtain the functions
immediately. The whole order process is easy, convenient
and quick, saves a lot complex links, improves the user
experience greatly, achieves the on-demand order and pay,
and saves the customer’s cost significantly.

Fig. 1 shows the main framework of SaaS in oilfield
software, and we can see that Internet plays an important role
in it.

III. SOFTWARE LAYOUT MODE

 The software layout of SaaS system program is a very
important issue. After several oil software design and
development, considering the complexity of the oilfield
software and the high operability of the software interface,
we realize that the B/S (Browser/Server) structure is hard to
achieve a satisfying performance. Although the B/S
technology is growing fast and RIA (Rich Internet
Application) has made great breakthrough, compared to the

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

1401

traditional C/S (Client/Server) system, there are still a lot of
inadequacies in B/S about the aesthetics of the interface,
operability and fluency. Thus, in our design of SaaS,
considering the particularity of oilfield software, we use C/S
structure for the layout of our application system and B/S
structure for our order system.

 C/S structure is a well-known software architecture. In
this mode software modules are distributed to Client and
Server side appropriately in order to make full use of
hardware and software resources, and nearly all the network
software system use this layout before internet technology
exploding. B/S structure takes the advantages of Internet and
web browser, combines various scripting languages (like
JavaScript, VBScript) and ActiveX technology [4-5], is a
product of the rapid development of Internet technology.

 In our SaaS of oilfield software, we combine B/S and
C/S structure together instead of use a single model, adopt
different software layout model for different target system.
Fig. 2 shows the SaaS software layout.

The two systems are developed separately since the using
of two different software layouts. But they use the same
database, and only when customer orders the corresponding
modules in the order system can they have the corresponding
access in the application system. The data sharing between
the two systems ensures effective access control.

IV. DATA STORAGE AND INTERACTION

Data is the values obtained by enterprise design,
experimental and productive process. And it can be used for

scientific research, to guide the design, to sum up experience
and decision-making. For modern enterprises, data is of
crucial importance. It is the lifeblood of the enterprise, and it
can fully reflect the past, present and future of the enterprise.

Data storage is an essential issue to our SaaS. How to
make user data a better security, how to isolate data between
different users, as well as how to get higher read/write
performance, these are the problems we need to consider.
We will explore these problems bellow.

A. The relative isolation of the multi-customer data

The SaaS in oilfield software needs to be able to serve for
multiple customers at the same time. Relative to the common
single customer system, its database need to be improved to
isolate customer data, in order to make data between
customers invisible to each other. From the customer's point
of view, their data belong to themselves entirely and just
themselves.

Generally, the isolation of multi-customer data can be
implemented in three ways [6]:

1) Independent database, which creates separate
database for each customer and there is no connection
between the databases. It has the highest data isolation and
security level but cost is higher.

2) Shared database, in which every customer uses the
same database, but own isolated data tables. Actually in this
method, database is not fully separated. But one database
can support multiple customers.

3) Shared data table, in which the customers’ data is
completely mixed together. This method costs much lower
than the first two methods, and every database can serve a
large number of customers. But we must add appropriate
security restrictions in the development of program, because
the isolation level was reduced.

 The first method has the highest isolation level, and
customers’ data is completely separated. On the other hand,
it costs the highest. The third has a lower costs and easy to
maintain, but it also has a lower isolation level. In fact,
isolation level depends on the market position of the product
and the customer’s acceptance to the data security. We need
to select specific data isolation to specific products and
customers.

To save cost, we will choose the third way to isolate data
between customers. In this way, we should add a common
field “comCode” to identify the data’s owner. Fig. 3 shows
the design of data table.

B. data security and encryption

After the isolation of customers' data, actually customers
will also be concerned about the data leakage, which may
have extremely serious consequences. The SaaS service
provider must be able to put user’s data in a state of relative
safety, encrypt customers' important data (such as password,
real name, major production indicators). Through these
measures, even if the database is hacked, the hacker can’t get
useful information but messy gibberish.

Data encryption refers to the plaintext, key and ciphertext.
Plaintext is the original customer data; ciphertext is the

User

 SaaS Server-Side

Internet

Browser

Order System

Client

Application System

Database

Figure 1. Main Framework of SaaS in oilfield software

Figure 2. SaaS software layout

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

1402

encrypted content that will be stored in the database.
Actually when design database, we can take out the
important data tables, and isolate them physically so as to
reduce the risk of data leakage.

In the data encryption process, we can use the
irreversible encryption algorithm [7] such as MD5 to encrypt
the data like customer passwords, because they do not need
to reconstruct the data. In this way, we can fully guarantee
the security of customer’s data. For the data such as
production data, because we must be able to decrypt the data
with decryption algorithm, we use the reversible encryption
algorithms, such as DES, RSA, base64, etc. according to the
requirement of security level.

After data leakage is prevented by data encryption, there
is another issue we need to talk: non-normal data loss, such
as database server crash and natural disaster, etc. For these
challenges, SaaS provider can use real-time backup
technology on the database. Every database server has server
keeps synchronization with it, and one will continue to work
even if the other comes down. This is a mature technology
but just costs a bit high. In addition, specific to natural
disasters such as flood, fire, earthquake, and so on, the SaaS
provider can deploy synchronization servers in different
districts. Two servers may be thousands of miles apart, but
they are synchronized, which can avoid data security
problems brought by natural disasters.

C. Distributed storage of large amounts of data

With the number of SaaS customers increasing, customer
data will be increasing too, so that ordinary single database
server will gradually not be able to meet the demand. At this
time, we need to design database clusters which can be
expanded, and use distributed databases to store our data.

We will design it in two aspects while considering the
scalability of the database server. Firstly, to split according
to the data table and each server stores only certain specified
data tables. In this way the database server will be more
unitary, and the amount of data will be substantially reduced.
Secondly, to split according to the customer and each server
only stores the specific customer data, the amount of stored
data will be substantially reduced as well.

By analyzing the above two ways, it can be easily found
that the second approach is significantly more scalable than
the first approach. In the first approach, although our data

table can be split in a very fine way, even one database
server only stores one data table, but with the increasing of
the customers’ number and their data, the amount of data of
each data table will eventually be unthinkably huge, so that
the first way will also arrive to the dead end. The second
approach compared to the first one will split data according
to the customer and all data of one customer will be stored in
one database server which is specified. When customer
number increases, we can increase the server number at the
same time, so that its scalability can be enhanced. Of course,
there are also limiting cases of the second approach, that is,
when the customer data is too large to a server, the second
way will encounter expansion bottleneck. In this case, we
can combine the first and second approach to solve the
problem, which means that we only store one customer’s
data table in one database server in a subdivided layer and
with further data split.

D. Client and server-side data interaction

The data is stored in the SaaS server and any user of
customers can connect to the database server through the
Internet, to access and operate on the required data when
uses the client. This is the data interaction between users'
client and server-side. Just as the Remoting technology
which is introduced before, in the oilfield software SaaS
service platform we designed, our data interaction will use
Remoting technology, so that the data can be passed
interactively on the Internet.

The data requested by the user is in the form of a binary
stream for transmission on the Internet, so that it can enhance
the transmission speed and security, and the transmission
protocols in use are HTTP, TCP/IP which we are all familiar
with. Those protocols have sure been installed in the user's
client machine, and so we will not require users to install
other software, which will be convenient to users who will
use the client.

E. Order and permissions verification

Before the interaction between user client and server-side,
the first thing to do is to verify the identity of the user and
only when pass the verification, the user can use the function
module and continue to interact with server-side. As user
authenticating in the oilfield software SaaS, in addition to the
ordinary user name and password authentication, there are
two types of validations. The first one is order verification.
Because SaaS service will charge, each customer should
order or renew the corresponding service before they can use
it. And the second is permissions validation. For limiting
user’s operation, each customer has one administrator user
and this user can set permission for all subordinate users of
the customer, and only the user who has permission can
operate the corresponding function modules. These two
types of verification, coupled with the user name, and
password authentication composes the user authentication
system of SaaS, and each user who logins SaaS applications
system needs to go through these verifications.

sys_company

code field1 field2 。。。

1 。。。 。。。 。。。

2 。。。 。。。 。。。

Table1

comCode field1 field2 。。。

1 。。。 。。。 。。。

2 。。。 。。。 。。。

Table2

comCode field1 field2 。。。

1 。。。 。。。 。。。

2 。。。 。。。 。。。
。。。。。。

Figure 3. The data table design

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

1403

V. IMPLEMENTATION OF APPLICATION SYSTEM

 Order system is multi-customer oriented and used by
administrator users, and every enterprise customer
registration will automatically generate an administrator user,
the administrator user can do operations such as order,
renewal, user management and rights management, etc. After
registering and the first logging in order system, the
administrator user should choose the service modules which
they need, set the number of users and duration time of
service, then the order system will figure out the total cost.
After payment, the administrator user can create departments,
roles and users, and grant the appropriate privileges to roles
and users. The current customer’s order status will display in
the order system, and the renewal process is basically the
same as order process.

Application system is customer-oriented and used for all
users. The customers can create and manage their
subordinate user accounts in the SaaS order system, so that
the users can then use these accounts to login and operate the
application system.

Application system uses C/S model which has the server
and client. As described in the previous section, the server-
side and client will exchange data through Remoting. The
server-side provides the necessary support (basically data
support) to the client, the client will get the support through
the Internet by connecting to the server-side, so that the
entire application system will be up and running and the
server-side must remain online during the process.

The user login authentication (including the user name
and password verification, order verification and permissions
validation) must be processed while using the SaaS
applications. After a successful login, the client will load the
appropriate function module according to the customer's
order as well as the user's permissions, and then generates
the corresponding function menu according to the functional
modules.

After the user’s login, the client will generate a static
instance to store user’s information such as user name, user’s
permissions, enterprise and department information as well
as a local object service proxy which has been initialized, so
that, in the SaaS various functional modules can freely call
these public properties and objects.

Every functional module, which exists independently to
each other, contains one service provided by the SaaS, and is
encapsulated in separate DLL file. The client loads modules
by reading the DLL files. We read the DLL file through
reflection mechanism in C #.

VI. CONCLUSION

The concept of SaaS which has been proposed over many
years [8], developing until now, has a lot of achievements,
and arrives in an enterprise-scale, finally becomes an
successful business mode of the hot cloud computing. This
article is summarized on the basis of a certain oilfield
software projects. Guided by the SaaS concept and
technology, we design a SaaS system solution in the oilfield
software. By using the popular technical means, we have
solved the problems appears in the design and
implementation process. This solution breaks the traditional
deployment mode of oilfield software, enables customers to
order the on-demand services freely, and saves the
customer’s purchase costs.

 In the same time, there are some deficiencies exist in the
SaaS solution summarized in this paper, such as: user rights
management is not detailed and flexible enough; the online
payment system is not considered. We will improve them in
our future work.

REFERENCES
[1] Frederiek Chong, Gianpaolo Carraro, Architecture Strategies for

Catching the long Tail, Microsoft Corporation, April 2006.

[2] Mark Turner, David Budgen, Pearl Brereton, “Turning Software into
a Service,” IEEE Computer Society,vol. 36, 2003, pp. 38-44.

[3] P. Obermeyer, J. Hawkins, .NET Remoting: A Technical Overview,
Microsift, MSDN Library, 2001.

[4] Kris Hadlock. Ajax for Web Application Developers, Beijing:
Tsinghua University Press, 2007.

[5] Lei Lei,Chen Jun, “Implmentation of Web communication by ExtJS
and pushlet,” Software Guide, vol. 2, Sept. 2010, pp. 118-120.

[6] Ye Wei, The Software Revolution in Internet Age: SaaS Architecture
Design, Beijing: Electronic Industry Press, 2009.

[7] Atul Kahate, Cryptography and network security, McGraw-Hill
Education (Asia) Co., 2005.

[8] Keith Bennett, Paul Layzell, David Budgen and Pearl Brereton,
Service-Based Software: The Future for Flexible software, UK:
University of Durham,1999.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

1404

