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Abstract— the paper made an adjustment on the mortality 
decomposition model which was first proposed by the author. 
The mortality data can be processed by the classical wavelet 
and HHT methods. Compared with the classical mortality 
analyzing method, more information about longevity risk can 
be captured by the adjusted mortality decomposition. As a new 
development, the adjusted mortality decomposition is more 
effective for the short data set like China. Also the paper gave 
a modified form of longevity risk index which is different from 
that the author introduced in another paper. The new modified 
index is more suitable for China. Based on the adjusted 
decomposition of mortality rate data and modified longevity 
risk index, the paper gave their application and detailed 
analysis on China longevity risk. The important result of 
different provinces is also given. 

longevity risk; mortality decomposition model; longevity risk 
index；stable distribution 

I.  INTRODUCTION 

Mortality data play the key role in the research of 
longevity risk. So many researchers paid more attention to 
mortality data analysis and promoted many models. They use 
some models to describe and predict the future mortality rate 
about some fixed group.  

As we know, the most popular method is life table. For a 
country, the basic model of the population mortality rate is 
whole national life table. And an insurance company also 
constructs life table based on its collection of products data. 
It makes sense that there is some difference between the 
above two. Another way to model mortality is to find the 
laws for the force of mortality. The mortality force is defined 
as the following:There are many laws for the mortality force 
like Gompertz law, Makebam law, Tbiele law and Weibull 
law.  

Now, Lee-Carter model became the basis for getting the 
information from mortality data set. And many derivative 
models followed it and were proved effective in different 
directions. But limited to the model framework, the 
information seeking stumbled. Just for that, the mortality 
decomposition was proposed by the author [1] and we will 
discuss it in the section 2.   

  Further, it is very helpful for an insurance company or 
other financial company to give a longevity risk index which 
shows the level of longevity risk of products. Many 
managers in insurance companies must face many products 
whose profits are influenced by longevity. It is possible that 

every product is designed for some specific people group and 
the longevity risk should be different. Always, only the way 
the national mortality rate table is used for all groups will 
bring the wrong result. And based on the past products data, 
the company can compute the mortality table for every group. 
So is there a good way to utilize the data to give a longevity 
risk index for the managers?  

Also, it is important to show a country the index of 
longevity risk since many countries must be involved with 
aging society. Different department is concerned with 
different group. For example, the social security pays more 
attention to the whole nation people and the medical 
department will pay more attention to the group with illness.  
So is there a longevity risk index for the whole nation?  

In the former paper, the author introduced  the longevity 
risk index, it satisfied the followings conditions: 1) It can use 
a simple index show the longevity risk of the fixed group; 2) 
The different indexes are express the difference the longevity 
risk faced by different group; 3) It is normalized process to 
compute it. 

In this paper, Section II is the most important one. We 
first introduce the basic tools and theory for the mortality 
decomposition in it. The modified longevity risk 
computation also was developed in it. In section III, we will 
use the mortality data from American and China to compute 
longevity risk model and naturally we give the longevity risk 
index of different provinces.  And the conclusion is given in 
Section IV.  

II. ADJUSTED DECOMPOSITON OF MORTALITY 

RATE AND LONGEVITY INDEX 

Since Lee-Carter model can’t get enough information 
from the data set. So we construct the mortality 
decomposition based on Lee-Carter model. If we regard the 
factors as the different signals, then the kernel focus is to 
decompose into several level signals. The framework can be 
described by the followings: 

 M L H H ϵL Lee Carter	Model	H , H 	are		from	EMD	of	HHT	 
 
In fact, HHT can give more levels for decomposition. But 

in the analysis of mortality data, two levels are enough for 
the following computation. And the remainder is naturally 
regarded as the white noise. 

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France. 
© the authors 

1462



The classical dynamic model for mortality over age and 
time is Lee-Carter model. The model has the following form:  lnm t α β k ϵ ,  

 
It is impossible to calibrate the Lee-carter model without 

other constraints. For example, so many researches choose 
the following constraints: 

                                 ∑k 0,∑β 1       
       
Other constraints can be adopted. But the constraints 

have no impact on the fitting and forecasting of the model.  
Based on the above, we can calibrate the model and solve 

the result of parameters. It is proved effective for the normal 
mortality data set. But for some data set like short data set, 
the information can’t be captured completely and the ϵ is not 
the white noise. So we adjusted the mortality decomposition 
and introduce another powerful tool called independent 
component analysis ICA. ICA is a special one of blind 
source separation. The mortality data in period dimension 
can be treated as the original signal. We use the popular 
algorithm in the paper [2] which gave the detailed process. 
As a result, we call this model the adjusted mortality 
decomposition model.   

 After that, we will use the results to give the adjusted 
longevity index computation.    
       Just like what we have said, mortality data can be 
decomposed into three level data based on the mortality 
decomposition model. And every level data plays different 
important role in the change of mortality.  And we use the 
different weights to change the original data into the new 
data set.   

We choose the weights {0.5, 0.3, 0.2} for three levels. 
There are two reasons for this weights set: the first reason is 
the fact that more definite trend should be given more weight; 
the second reason is that it is from optimization results of 
function with free weights.  

We denote the new mortality data set as m ,∗  . And define 
the longevity risk index function as the following map:  

 f : m ,∗ , 0, ∞ → R 

 
   is the time horizon for longevity risk index and it is 

understandable that the longevity risk index of different time 
horizon should different. Also, we can get that more accurate 
longevity risk index is for the shorter time horizon.  

Here we give two kinds of definition, one of them is the 
following:  

 f E E max 0, Δm ,∗  
 
     The other way is the following:  
  f E VaR m ,∗  
 
 Here VaR is defined as its definition in financial risk 

management; VaR method takes the prominent role in the 
financial risk management. Its essence is to give a explicit 
idea about the faced risk and use a simple number to express 

it. For a given confidence level and time horizon, the 
probability for the portfolio loss to exceed the VaR will be 
the given confidence level over the given time horizon.  

Let β is the confidence level like 5% and L is the loss for 
portfolio. Then,  

 VaR L inf	 l ∈ R: F l β  
 
There are many methods to compute VaR value for 

portfolio like Delta-Normal method, historical data method 
and simulation methods.  Because the delta-Normal method 
is limited to the normal distribution, we will use the other 
methods to computing VaR for mortality rate data.  

Now for the first definition, the computing process is the 
following:  

 
  Step 1: Computing Δm ,∗ 	for fixed x age based on the 

mortality data series; 
  Step 2: Removing the negative results for the computing 

results; 
  Step 3:  Computing the expectation; 
  Step 4: Computing the expectation according to the 

population proportion and get the result. 
 
Now for the other definition, the computing process is 

the following: 
 
  Step 1: Computing VaR m ,∗  for fixed x age based on 

the mortality rate series; 
  Step 2: Computing the expectation according to the 

population proportion and get the result. 
 
Here, in the first step, we use the historical data to 

compute Δm ,∗  and VaR m ,∗  . But in fact there are two 
other methods which can be used for computing: One 
method is statistical distribution and this method will give 
the distribution of the mortality rate; the other method is 
Monte-Carlo simulation. Both methods also must use the 
historical data. In practices, the results from three methods 
are similar.  

In our practice, the above process of LRI is not suitable 
for China mortality data. Because of missing data, the 
computing result seems to enlarge the longevity risk. Some 
facts also bring conflicts. So how can we get more 
information and more rational outcome?  The key is the 
distribution.  

   We observe the fact the data after mortality 
decomposition model always fit normal distribution very 
well. But for some short data, like China, the mortality 
decomposition model can’t capture the most effective 
information. It does not mean that it is not a good method. It 
means that HHT can’t continue to get information in those 
data sets. 

   We modified the decomposed result. We use stable 
distribution or fractal distribution instead of normal 
distribution. And under the two definitions, we also can give 
the longevity risk index. It should be called modified 
longevity risk index (MLRI).  
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   A random variable X is called stable if its characteristic 
function is given by the following:  

 f t, μ, c, α, β exp	 itμ |ct| 1 ω t, α  

      Here,  ω t, α tg 	α 1ln| | 	 1  

      And,  sgn t 1, μ 00, μ 01, μ 0  is a shift parameter.  

  β ∈ 1,1  is the skewness parameter which measures 
the asymmetry of the distribution. α  is also the most 
important parameter which gives the several types of this 
distribution. In fact, it measure how heavy the distribution’s 
tail is. As we know, both the normal distribution and the 
Cauchy distribution are the special cases.   

 We used the stable distribution under the 1st and 2nd 
definition to compute LRI and get the MLRI of US. The 
result is the following table (table 1). In this table, we also 
present the LRI as comparison. The table gives the fact that 
LRI and MLRI are very similar when the data set is long 
enough.  

 
             Table 1.  LRI and MLRI of US 
  US-1st definition US-2nd definition 
 
  LRI MLRI LRI MLRI 
1 0.00476 0.004849 0.0103 0.010405 
2 0.00572 0.006022 0.0152 0.015746 
3 0.00622 0.006497 0.0176 0.019181 
4 0.00644 0.006561 0.0198 0.020765 
5 0.00671 0.007004 0.0221 0.022345 
6 0.00689 0.006985 0.0243 0.024766 
7 0.0071 0.007303 0.026 0.026827 

 

III. LRI AND MLRI RESULTS OF CHINA 

Our Chinese mortality data is a 18 101 matrix which 
includes 18 years (1986, 1989, 1994-2009) and 101 ages. 
The data is from official issued statistical data. And the data 
is the average result of male and female. The surface formed 
by the data set is just like showing in Figure 1. 

 
 

Fig. 1. The surface of China mortality rate (average) 
 

Then the computed final longevity risk index (LRI) is 
0.004636 and the modified longevity risk index is 0.002153. 
The MLRI is apparently lower than the LRI. The reason is 
because Chinese data is more different from normal 
distribution. It can be found from the characteristic 
parameter. 

This is for one year. Considering two years, the 
computing processing is just like above except the interval 
time is two year in step 1. And the result for 2 year is 
0.005541 and 0.002618. And so on. Figure 2 gives the 
longevity risk index with respect to year. It is understandable 
that there is more risk for more years. 
 

 
   

                

                      Fig. 2. LRI and MLRI of China with years 
 

 If we use the second definition, the result is similar. The 
following is the result of LRI and MLRI (Figure 3). Because 
of VAR, both LRI and MLRI appear with more volatility. It 
makes sense that more risk will be captured with year. The 
trend has a special point. The LRI and MLRI do not always 
increase. If we pay attention to the LRI, the MLRI in 7-year 
make the most risk! The reason is the short data set. We also 
computed the MLRI and LRI of many other countries with 
long data set like US, Australia, there is no similar confusion. 
VaR computing would fluctuate based on the short historical 
data set. 

 

      Fig. 3. The trend of American longevity risk with years 
 
 
Table 2 gives the longevity risk index of some different 

provinces of China, two and three years. 95% is the 
confidence ratio. The data is from the provincial statistical 
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data. The results only included some provinces because only 
a few provinces had the enough data for computing. The data 
must be more than ten years at least. 

From LRI and MRI, Tianjin seems to face the least 
longevity risk. And Henan seems to face the least longevity 
risk. Combined with the most population, it is a challenge for 
Henan to overcome it. From the result, MLRI give more 
information about longevity risk. 
 
Table 2: LRI and MLRI based on adjusted mortality decomposition model 
 

LRI and MLRI of several provinces of China 

1st Definition 2nd Definition 

LRI MLRI LRI MLRI 

Beijing 0.00380 0.00359 0.00412 0.00403 

Shanghai 0.00372 0.00308 0.00312 0.00212 

Tianjin 0.00221 0.00170 0.00233 0.00180 

Liaoning 

Province* 
0.0039 0.00333 0.00350 0.00284 

Zhejiang 

Province 
0.00376 0.00285 0.00354 0.00332 

Shandong 

Province 
0.00390 0.00373 0.004226 0.00333 

Jiangsu 

Province 
0.00372 0.0030 0.00316 0.00219 

Guangdong 

Province 
0.00353 0.00263 0.00350 0.003321

Sichuan 

Province 
0.00401 0.00338 0.00431 0.00405 

Henan 

Province* 
0.00412 0.00384 0.00427 0.00355 

 

IV. CONCLUSION 

The mortality decomposition model can capture the more 
information which has been missed by other models. And 
longevity risk index gives an explicit expression about 

longevity risk. Compared with the LRI, the modified LRI 
called MLRI is suitable for China. Our further steps are to 
finish its application for the portfolio correlated with 
longevity risk.  
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