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Abstract— This paper mainly concerns the uniqueness of 
solutions for a fourth order boundary value problem. By virtue 
of Browder theorem, the main result is obtained when the 
nonlinearity term f satisfies the Lipschitz condition. The result 
is new and complement of some previously known results. 
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I.  INTRODUCTION 

In this paper, we shall study the unique solution for the 
fourth order boundary value problem  
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Where RRf →×]1,0[: is continuous, R∈ηξ , are 
parameters, which satisfy the conditions:  
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Recent years, there have been many papers to study the 
existence of solutions for some fourth order boundary value 
problems, see [1-5]. In [1, 2], for the problems of type (1), 
the authors all obtained the existence results of positive 
solutions when f is either superlinear or sublinear in u  by 
employing the cone expansion or compression fixed point 
theorem. In [3-5], the authors applied critical point theory to 
consider the existence of solutions for a class of fourth order 
boundary value problems and obtained some excellent 
results. In this paper, by virtue of Browder theorem, we shall 
discuss the unique solution for the problem (1). It is 
interested that we only need the nonlinearity f to satisfy the 
Lipschitz condition, it is a natural condition and there are a 
large number of continuous functions satisfy the condition. 
As is known, [0,1]C  is the Banach space with the norm 

[0,1]|| || max | ( ) |t x t∈⋅ =  and 2[0,1]L  is a real Hilbert space with 

the inner product 
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Then the problem (1) has a solution in 4[0,1]C  if and only 

if the following equation 
1 1

1 20 0
( ) ( , ) ( , ) ( , ( )) , [0,1], (2)u t G t s G s f u d ds tτ τ τ τ= ∈   

has a solution in [ 0 , 1 ]C . 

 From the expression of ( 1, 2),iG i = we see 

( , ) 0,iG t s >  and ( , ) ( , )i iG t s G s t=  for all , (0,1).t s ∈  

Let  
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Clearly, from the symmetric property of 1 2, ,G G  we have 

( , ) ( , ).G t s G s t=  Therefore, (2) is equivalent to the 
following integral equation  
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Then (2) is also equivalent to the operator equation 
, [0,1].u TAu u= ∈  It is well known that all eigenvalues of 

T are { } 4 4 2 2

1
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 which have the 

corresponding orthonormal eigenfunctions  
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In what follows, we list the properties of T (see [3-5]): 
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(a) 2: [0,1] [0,1]T L C→  is a linear completely 

continuous operator and also a linear completely continuous 

operator from 2[0,1]L  to 2[0,1]L ;  

(b) 2: [0,1] [0,1]T L C→ is positive bounded linear and 

symmetric, so the square root operator of T , 
1

22 : [ 0 ,1] [ 0 , 1]T L C→ exists and is unique, and is also 

bounded linear and symmetric with 
1 1

2 2| | | | | | | |T T= ; 

 (c) 
1

22 : [ 0 ,1] [ 0 ,1]T L C→  is a linear completely 

continuous operator and also a linear completely continuous 
operator from 2[0,1]L  to 2[0,1]L .  

Since T  is linear completely continuous and symmetric, 
the following formulas with T  hold: 
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1367 of [3], we see 
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Next, we shall define 
1 1

22 2( ) , [0,1].J u u T AT u u L= − ∈  

Then we easily see that the solution 0u of (1) is equivalent 

to 0( ) 0,J u = see Lemma 2.7 of [3]. 

II. MAIN RESULTS 

We first give our basic definitions and lemmas about 
Browder theorem. 

Definition 2.1[6，P303]  Let E  be a reflexive real 

Banach space. We say *:L E E→  is demicontinuous if 
L  maps strongly convergent sequences in E  to weakly 

convergent sequences in *E .  
Lemma 2.1[6，Theorem5.3.22] (Browder theorem) Let 

E  be a reflexive real Banach space. Suppose that 
*:L E E→  be an operator satisfying the conditions 

(i) L is bounded, demicontinuous;  

(ii)  || ||

( ( ), )
lim ;

|| ||u

L u u

u→∞ = +∞  

(iii) L is monotone on the space E , i.e., for all 
,u v E∈ , we have 

( ( ) ( ), ) 0.L u L v u v− − ≥                           (4) 

Then the equation *( )L u f=  has at least one solution 

u E∈  for every * *f E∈ . If, moreover, the inequality (4) 

is strict for all ,u v E∈ , u v≠ , then the equation 
*( )L u f=  has precisely one solution u E∈  for 

every * *f E∈ . 

Now, we list our assumptions for the nonlinear term f . 

(H1) ),]1,0([ RRCf ×∈  and ( ,0) 0.f t ≠   

(H2) There is a constant ( )20,c −∈ Λ  such that  

2| ( , ) ( , ) | | |, , [0,1],f t u f t v c u v u v L− ≤ − ∀ ∈  

uniformly in [0,1].t ∈  

Example 2.1 Let  
2( , ) ,f t u uε δ−= Λ +  

where (0,1), 0ε δ∈ ≠ . Clearly, (H1) and (H2) hold. 

Theorem 2.1 If (H1), (H2) hold, then the problem (1) 
has only a nontrivial solution. 

Proof. We first define two operators 
2 2

1 2, : [0,1] [0,1]L L L L→  as follows: 

1

1 0
( ( ), ) ( ) ( ) ,L u v u t v t dt= 

1 1 1 1
1

2 2 2 2
2 0

( ( ), ) , , ( ) ( ) .L u v T AT u v f t T u t T v t dt
   

= =   
   


Clearly, 1L  is linearly continuous, so bounded. We shall 

show 2L  is bounded and continuous. By (H2), we find there 

exists a 1 0c >  such that 
2

1| ( , ) | | | , [0,1]f t u c u c u L≤ + ∀ ∈ ,         (5) 

uniformly in [0,1].t ∈ Indeed, in the inequality of 

(H2), let 0v = , we have by the triangle inequality 

| ( , ) | | ( ,0) | | ( , ) ( ,0) | | |,f t u f t f t u f t c u− ≤ − ≤  

for all 2[0,1]u L∈ . Let 1 | ( ,0) | 0.c f t= >  Then (5) 

holds, as required. Therefore, we have by (5) and 
Holder inequality, note that (3),  
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2
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Thus 2L  is bounded.  

On the other hand, by (H2), we see from Holder 
inequality and (3) 
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Consequently, 2L  is continuous. So ( ( ), )J u v  is bounded 

and continuous, so demicontinuous. By (5) again, we get 
1 1

1 12 2 2

0 0
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So, || ||

( ( ), )
lim

|| ||u

J u u

u→∞ = +∞ .  

Finally, we shall prove J  is monotone. Indeed,  
1 2

0
( ( ) ( ), ) | ( ) ( ) |J u J v u v u t v t dt− − = −  

1 1 1 1
1

2 2 2 2

0
, ( ) , ( ) ( ) ( )f t T u t f t T v t T u t T v t dt

      
− − −      

       
  

21 1
12 2 2

0
|| || ( ) ( )u v c T u t T v t dt≥ − − −  

2 2|| || || || 0, .u v c u v u v≥ − − Λ − > ≠  
Hence, by Lemma 2.1, we find the problem (1) has only a 
solution. 
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