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Abstract—In this paper, Applying the theory of Nevanlinna, we 
investigated uniqueness problem of difference polynomial of 
meromorphic functions and obtained uniqueness theorems of  
meromorphic functions , which Extended and improved the 
results of literature[5]. 
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I.  INTRODUCTION AND MAIN RESULTS 

With the development of difference analogue of 
Nevanlinna theory, many authors paid their attentions to the 
value distribution of difference polynomials [1-5]. In 
particular, the difference logarithmic derivative lemma, 
given by Chiang and Feng [6], Halburd and Korhonen [7], 
plays an important part in considering the difference 
analogues of Nevanlinna theory. 

In this paper, we assume that reader is familiar with the 
standard notations and results of Nevanlinna theory, see [8-
11]. 

K.Liu, X.L.Liu, T.B.Cao  in [12] got the following resuls. 

Theorem A[12] Let f and g  be transcendental  

meromorphic functions of  finite  order, suppose that  c is 

nonzero constant and n N∈ . If 14n ≥ . ( )nf f z c+ and 

( )ng g z c+ share 1 CM, then f tg≡ , or fg t= , where 
1 1nt + = . 

Theorem B[12] Let f and g  be transcendental  meromorphic 

functions of  finite  order, suppose that  c is nonzero 

constant and n N∈ . If 26n ≥ . ( )nf f z c+ and 

( )ng g z c+ share 1 IM, then f tg≡ , or fg t= , where 
1 1nt + = . 

In this paper, we will investigate the uniqueness of q-difference 
polynomials and obtain the following theorems. 

Theorem 1. If ( )f z is a transcendental meromorphic 

functions of zero order, If
1

( ) ( )i

d
n

i

f z f q z
=

∏  and 

1

( ) ( )i

d
n

i

g z g q z
=

∏  share 1,∞ ,CM, , , ,n k m d are 

positive integer and 4 4n d≥ + ， then  

, 1n df tg t += = .  

Theorem 2. If ( )f z is a transcendental entire functions of 

zero order, If
1

( )( ( ) 1) ( )i

d
n m

i

f z f z f q z
=

− ∏  and 

1

( )( ( ) 1) ( )i

d
n m

i

g z g z g q z
=

− ∏  share 1 CM, , , ,n k d m are 

positive integer and 5n m d≥ + ， then  ,f tg=  

1n d mt t+ = = . 

II. PRELIMINARY LEMMAS  

Lemma 1 [8]  Let f  be a non-constant meromorphic 

function, ( 1,2,3)i iα =  be small functions with respect  

to f , then
3 __

1

1
( , ) ( , ) ( , )

i i

T r f N r S r f
f a=

≤ +
−  

Lemma 2[4]  Let f  be  transcendental  meromorphic  

functions of  zero  order, \{0}q C∈ ，then 

( , ( )) ( , ) ( , )qT r f qz T r f S r f= +  

Lemma  3[4] Let f  be  transcendental  meromorphic  

functions of  zero  order, \{0}q C∈ ，then 

( , ( )) ( , ) ( , )qN r f qz N r f S r f= +  

Lemma  4[11] Let f  be  transcendental  meromorphic  

functions of  zero  order, \{0}q C∈ ，then 

( )
( , ) ( , )

( ) q

f qz
m r S r f

f z
=  
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With the same methods of  Lemma 2.4 in [12],we can get 
the following lemma 5. 

Lemma 5 Let
1

( )( ( ) 1) ( )i

d
n m

i

f z f z f q z
=

− ∏ .If f  be  

transcendental  entire functions of  zero  order 

( , ) ( ) ( , ) ( , )qT r F n m d T r f S r f= + + + . 

If f  be  transcendental  meromorphic functions of  zero  

order，then 

( , ) ( ) ( , ) ( , )qT r F n m d T r f S r f≥ + − + . 

( , ) ( ) ( , ) ( , )qT r F n m d T r f S r f≤ + + + . 

III. PROOF OF THEOREM 1 

Proof of  theorem 1. From the conditions of theorem 1, we 

know 1

1

( ) ( ) 1

( ) ( ) 1

i

i

d
n

i
d

n

i

f z f q z
c

g z g q z

=

=

−
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−

∏

∏
, 

c is nonzero constant,so we rewriting it as 

1 1

( ) ( ) 1 ( ) ( )i i

d d
n n

i i

f z f q z c cg z g q z
= =

− + =∏ ∏       (1) 

First we let 
1

( ) ( )i

d
n

i

F f z f q z
=
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1

( ) ( )i

d
n

i

G g z g q z
=

= ∏ . 

If 1c ≠ , From (1) and the lemma 1, we have  
__ __ __1 1

( , ) ( , ) ( , ) ( , )
1

T r F N r F N r N r
F F c

≤ + +
− +

    

        __

( , ) (1 ) ( , ) (1 ) ( , )

1
( , ) ( , )

S r f d T r f d T r f

N r S r f
G

+ ≤ + + +

+ +
 

(2 2 ) ( , ) (1 ) ( , )d T r f d T r g≤ + + +  

( , )S r f+                                                                  (2) 

From the lemma 5, we know 

( , ) ( ) ( , ) ( , )qT r F n d T r f S r f≥ − +         (3) 

Combining (2) and (3), we have 
( 3 2) ( , ) (1 ) ( , )

( , ) ( , )q q

n d T r f d T r g

S r f S r g

− − ≤ +
+ +               

   (4) 

Applying the same methods of  (4),we have  

( 3 2) ( , ) (1 ) ( , )

( , ) ( , )q q

n d T r g d T r f

S r f S r g

− − ≤ +
+ +               

   (5) 

Combining (4) and (5), we have 
( 4 3)( ( , ) ( , ))

( , ) ( , )q q

n d T r f T r g

S r f S r g

− − +
≤ +            

 

Which is a contradicts with 4 4n d≥ + , 

Then 1c = , from (1), we have  

1 1
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d d
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f z f q z g z g q z
= =

=∏ ∏  . 

Let 
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( )
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= ，then we have 
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q
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=

=
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Which is a contradicts with 4 4n d≥ + , so 

( )h z  is a constant. Let ( )h z t= , then 1n dt + = , we 

complete the proof of theorem 1. 
Proof of  theorem 2.  From the conditions of theorem 1, we 

know   1

1

( )( ( ) 1) ( ) 1
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c is nonzero constant, so we rewriting it as 
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        (6) 

First we let 
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d
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If 1c ≠ , From (6) and the lemma 1, we have  
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__ __1 1
( , ) ( , ) ( , )
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N r S r f
G

+ ≤ + +

+ +
 

(1 ) ( , )m d T r f≤ + +  

(1 ) ( , ) ( , )m d T r g S r f+ + + +              (7) 

                                                               
From the lemma 5, we know 

( , ) ( ) ( , ) ( , )qT r F n m d T r f S r f= + + +     (8) 

Combining (7) and (8), we have 
( 1) ( , ) (1 ) ( , )

( , ) ( , )q q

n T r f m d T r g

S r f S r g

− ≤ + +
+ +               

   (9) 

Applying the same methods of  (9),we have  
( 1) ( , ) (1 ) ( , )

( , ) ( , )q q

n T r g m d T r f

S r f S r g

− ≤ + +
+ +               

  (10) 

Combining (9) and (10), we have 
( )( ( , ) ( , ))

( , ) ( , )q q
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S r f S r g

− − +
≤ +            

 

Which is a contradicts with 5n m d≥ + . 

Then 1c = , from (6), we have  
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Let 
( )

( )
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h z

g z
= ，then 

1 1
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g h z h q z h z h q z+
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If ( )h z  is not a  constant, then  ( )h z  is meromorphic. 

If 1 is exceptional value of 
1
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d
n m

i

h z h q z+
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−∏ , 
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From (11) ,we have  
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Which is a contradicts with 5n m d≥ + , 

So 1 is not exceptional value of 
1

( ) ( ) 1i

d
n m

i

h z h q z+

=

−∏ . 

So there exists a point 0z  such that  

0 0
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=
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Since ( )g z  is entire, so 0 0
1
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d
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so 0( ) 1mh z =
, then 
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(2 2 ) ( , ) ( , )qd m T r h S r h≤ + + +                   

From (10) we have  

1

1

( ) ( , ( )) ( , ( )) ( , ( ) ( ))

1
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i
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d
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T r S r h d m T r h S r h
h q z
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=
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∏

∏

 

Which is a contradicts with 5n m d≥ + . 

So ( )h z  is a constant.  If ( )h z t= , then 1n d mt t+ = = , 

we complete the proof of theorem 2. 
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