Equations Of Long Waves With A Free Surface III. The Multidimensional Case

Boris A KUPERSHMIDT

The University of Tennessee Space Institute
Tullahoma, TN 37388, USA
E-mail: bkupersh@utsi.edu
Received December 1, 2004; Accepted January 19, 2005

Abstract

Long-wave equations for an incompressible inviscid free-surface fluid in $N+1$ dimensions are derived and shown to be Hamiltonian and liftable into the space of moments.

1 Introduction

Hierarchies of integrable evolution equations are concentrated in 0 (discrete) and 1 (continuous) space dimensions. The only known integrable 2-dimensional hierarchies, first introduced in [5,6] by Manin and myself, are of free-surface type; the prototypical such system was discovered by Benney in 1973 [1]:

$$
\begin{align*}
u_{t} & =u u_{x}+g h_{x}-u_{y} \int_{0}^{y} u_{x} d y \tag{1.1a}\\
h_{t} & =\left(\int_{0}^{h} u d y\right)_{x} \tag{1.1b}
\end{align*}
$$

Here $-\infty<x<\infty ; t$ is the time variable; $u=u(x, y, t)$ is the horizontal component of velocity of an inviscous incompressible fluid; $0 \leq y \leq h ; h=h(x, t)$ is the height of the free surface over the bottom $\{y=0\}$; subscripts t, x, and y denote partial derivatives; the density of the fluid is taken to be 1 ; the gravitational acceleration g in formula (1.1a) is also taken to be 1 most of the time; and the mathematical time t in formulae (1.1) is opposite in sign to the physical time t, to make forthcoming formulae simpler.

Benny in [1] found two remarkable facts about the system (1.1):
(A) If one introduces the moments of the velocity $u(x, y, t)$:

$$
\begin{equation*}
A_{n}(x, t)=\int_{0}^{h} u^{n}(x, y, t) d y, \quad n \in \mathbf{Z}_{\geq 0} \tag{1.2}
\end{equation*}
$$

then the integro-differential system (1.1) implies a purely differential evolution system in the space of moments A_{n} 's:

$$
\begin{equation*}
A_{n, t}=A_{n+1, x}+g n A_{n-1} A_{0, x}, \quad n \in \mathbf{Z}_{\geq 0} \tag{1.3}
\end{equation*}
$$

(B) The system (1.3) has an infinite number of conserved densities $H_{n} \in A_{n}+\mathbf{Z}\left[g ; A_{0}\right.$, ..., A_{n-2}]:

$$
\begin{equation*}
H_{0}=A_{0}, \quad H_{1}=A_{1}, \quad H_{2}=A_{2}+g A_{0}^{2}, \ldots \tag{1.4}
\end{equation*}
$$

Both of these facts can be generalized considerably. In this note I shall re-examine the nature of the Benney system (1.1) by deriving an $(N+1)$-dimensional version of it for the case when the external potential is arbitrary and not just gravitational. We shall see that the resulting $(N+1)$-dimensional free-surface system, integro-differential as expected, again implies a purely differential evolution system in the space of moments.

2 Incompressible Fluids With A Free Surface

We start off the Euler equations for an incompressible inviscid fluid in $N+1$ dimensions. Denote the space coordinates by $\left(x_{\alpha}\right)=\left(x_{i} ; y\right), 1 \leq \alpha \leq N+1,1 \leq i \leq N, y=x_{n+1}$, and set

$$
\begin{equation*}
\partial_{\alpha}=\partial / \partial x_{\alpha}, \quad(\cdot)_{\alpha}=\partial_{\alpha}(\cdot), \quad \partial_{i}=\partial / \partial x_{i}, \quad(\cdot)_{i}=\partial_{i}(\cdot) \tag{2.1}
\end{equation*}
$$

The Euler equations are:

$$
\begin{align*}
& u_{\alpha, t}-u_{\beta} u_{\alpha, \beta}=(P-U), \\
& u_{\alpha, \alpha}=0 \tag{2.3}\\
& h_{t}=\left(\int_{0}^{h} u_{i} d y\right)_{, i} \tag{2.4}\\
& \left.u_{N+1}\right|_{y=0}=0 \tag{2.5}\\
& \left.P\right|_{y=h}=P_{0}=\text { const } \tag{2.6}
\end{align*}
$$

Here $\boldsymbol{u}=\left(u_{\alpha}\right)=\left(u_{1}, \ldots, u_{N+1}\right)$ is the velocity vector, $P=P\left(x_{1}, \ldots, x_{N+1} ; t\right)$ is the pressure, $U=U\left(x_{1}, \ldots, x_{N+1}\right)$ is the potential, $h=h\left(x_{1}, \ldots, x_{N} ; t\right)$ is the height of the free surface over the horizontal (for inessential simplicity) bottom $\{y=0\}$; and we sum on the repeated indices.

The system (2.2-6) is clearly non-local, having the non-holonomic incompressibility constrain (2.3) imposed upon it, and with no separate equation for the time evolution of the unknown pressure function P given. It is only after one makes a "long-wave approximation" to this not-evolutional system that one ends up with a genuine evolution system like (1.1).

3 Long-wave Approximation

Pick arbitrary non-zero constants $\lambda_{1}, \ldots, \lambda_{N+1}$, and generalize the system (2.3-6) by keeping equations (2.3-6) unchanged and replacing equation $\left(2.2_{\alpha}\right)$ by the equation

$$
\lambda_{\alpha}\left(u_{\alpha, t}-u_{\beta} u_{\alpha, \beta}\right)=(P-U)_{, \alpha}, \quad \text { no sum on } \alpha .
$$

Our original system (2.2-6) results when

$$
\begin{equation*}
\lambda_{1}=\ldots=\lambda_{N}=\lambda_{N+1}=1 . \tag{3.2}
\end{equation*}
$$

Now set

$$
\begin{equation*}
E=E(\boldsymbol{\lambda})=\int_{0}^{h} d y\left(\frac{\lambda_{\alpha}}{2} u_{\alpha}^{2}-U\right) . \tag{3.3}
\end{equation*}
$$

This is an analog of the energy density for our extended system $\{(3.1),(2.2-6)\}$, because Proposition 3.4.

$$
\begin{equation*}
E, t=\left\{\int_{0}^{h} d y\left(-U-P_{0}+P+\frac{\lambda_{\beta}}{2} u_{\beta}^{2}\right) u_{i}\right\}, i . \tag{3.5}
\end{equation*}
$$

Proof. We have:

$$
\begin{align*}
& E, t=\frac{\lambda_{\alpha}}{2} u_{\alpha}^{2}\left|{ }_{h} h_{t}-U\right|_{h} h_{t}+ \tag{3.6a}\\
& +\int_{0}^{h} d y \lambda_{\beta} u_{\beta}\left\{\lambda_{\beta}^{-1}(P-U)_{, \beta}+u_{\alpha} u_{\beta, \alpha}\right\} . \tag{3.6b}
\end{align*}
$$

Let us transform separately each of the two summands in the expression (3.6b).

$$
\text { 1) } \begin{align*}
& \int_{0}^{h} d y u_{\beta}(P-U)_{, \beta}[\operatorname{by}(2.3)]=\int_{0}^{h} d y\left\{u_{\beta}(P-U)\right\}, \beta= \\
& \quad=\left.\left\{u_{N+1}(P-U)\right\}\right|_{0} ^{h}+\left\{\int_{0}^{h} d y u_{i}(P-U)\right\}, i-\left.\left\{(P-U) u_{i}\right\}\right|_{h} h_{, i}= \\
& \quad=\left(\left.U\right|_{h}-P_{0}\right)\left(-\left.u_{N+1}\right|_{h}+\left.u_{i}\right|_{h} h,,_{i}\right)+\left\{\int_{0}^{h} d y u_{i}(P-U)\right\}, i \tag{3.7}
\end{align*}
$$

But formulae (2.3,5) imply that

$$
\begin{equation*}
u_{N+1}=-\int_{0}^{y} d y u_{i, i}, \tag{3.8}
\end{equation*}
$$

so that

$$
\begin{align*}
& \left.u_{N+1}\right|_{h}=-\int_{0}^{h} d y u_{i, i}=-\left(\int_{0}^{h} d y u_{i}\right),_{i}+\left.u_{i}\right|_{h} h,_{i} \quad[\mathrm{by}(2.4)]= \\
& =-h_{t}+\left.u_{i}\right|_{h} h,_{i} . \tag{3.9}
\end{align*}
$$

Hence, the expression (3.7) equals to

$$
\begin{align*}
& \left(\left.U\right|_{h}-P_{0}\right) h,_{t}+\left\{\int_{0}^{h} d y u_{i}(P-U)\right\},{ }_{i} \tag{3.10}\\
& \text { 2) } \int_{0}^{h} d y \lambda_{\beta} u_{\beta} u_{\alpha} u_{\beta, \alpha}[\text { by }(2.3)]=\int_{0}^{h} d y\left(\frac{\lambda_{\beta}}{2} u_{\beta}^{2} u_{\alpha}\right),_{\alpha}= \\
& \quad=\left.\frac{\lambda_{\beta}}{2} u_{\beta}^{2} u_{N+1}\right|_{0} ^{h}+\left(\int_{0}^{h} d y \frac{\lambda_{\beta}}{2} u_{\beta}^{2} u_{i}\right),,_{i}-\left.\left.\frac{\lambda_{\beta}}{2} u_{\beta}^{2}\right|_{h} u_{i}\right|_{h} h,_{i} \quad[\text { by }(2.5),(3.9)]= \\
& \quad=\left.\frac{\lambda_{\beta}}{2} u_{\beta}^{2}\right|_{h}\left(-h_{t}\right)+\left(\int_{0}^{h} d y \frac{\lambda_{\beta}}{2} u_{\beta}^{2} u_{i}\right)_{, i} . \tag{3.11}
\end{align*}
$$

Collecting together expressions $(3.6 a, 10,11)$, we arrive at formula (3.3).
We now set

$$
\begin{equation*}
\lambda_{1}=\ldots=\lambda_{N}=1, \quad \lambda_{N+1}=\epsilon \tag{3.12}
\end{equation*}
$$

consider ϵ as an asymptotic parameter, and keep only zero-order in ϵ terms in the resulting asymptotic expansion.

The equation $\left(3.1_{N+1}\right)$ then becomes:

$$
\begin{equation*}
(P-U),_{N+1}=0 \tag{3.13}
\end{equation*}
$$

which can be rewritten with the help of (3.6) as

$$
\begin{align*}
& P-U=P_{0}+V \tag{3.14}\\
& V=V\left(x_{1}, \ldots, x_{n}, h\right)=-\left.U\right|_{h} \tag{3.15}
\end{align*}
$$

We thus arrive at the purely evolution system:

$$
\begin{align*}
u_{i, t} & =u_{j} u_{i, j}-u_{i, y} \int_{0}^{y} u_{j, j} d y+V_{, i} \quad 1 \leq i \leq N \tag{3.16a}\\
h_{t} & =\left(\int_{0}^{h} u_{j} d y\right)_{, j} \tag{3.16b}\\
u_{i} & =u_{i}(\boldsymbol{x}, y, t), h=h(\boldsymbol{x}, t), \quad \boldsymbol{x}=\left(x_{1}, \ldots, x_{N}\right) \tag{3.16c}
\end{align*}
$$

where we used formula (3.8) for u_{N+1}.
For the case

$$
\begin{equation*}
N=1, U=-g y^{2} / 2, \quad V=g h^{2} / 2, \tag{3.17}
\end{equation*}
$$

we recover the original Benny system (1.1).
We now proceed to show that the system (3.16) is a Hamiltonian system which induces a purely differential evolution in the space of moments.

4 The Evolution Of Moments

For a multiindex

$$
\begin{equation*}
\sigma=(\sigma(1), \ldots, \sigma(N))=\left(\sigma_{1}, \ldots, \sigma_{N}\right) \in \mathbf{Z}_{\geq 0}^{N} \tag{4.1}
\end{equation*}
$$

set

$$
\begin{equation*}
A_{\sigma}=A_{\sigma}(x, t)=\int_{0}^{h} u^{\sigma} d y \tag{4.2}
\end{equation*}
$$

where

$$
\begin{equation*}
u^{\sigma}=u_{1}^{\sigma(1)} \ldots u_{N}^{\sigma(N)} \tag{4.3}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
A_{0}=h . \tag{4.4}
\end{equation*}
$$

Proposition 4.5 .

$$
\begin{equation*}
A_{\sigma, t}=A_{\sigma+1_{j}, j}+\sigma_{j} A_{\sigma-1_{j}} V_{, j}, \sigma \in \mathbf{Z}_{\geq 0}^{N} \tag{4.6}
\end{equation*}
$$

where 1_{j} is the multiindex

$$
\begin{equation*}
1_{j}=(0, \ldots, 1, \ldots, 0) \tag{4.7}
\end{equation*}
$$

with only nonzero entry being 1 at the $j^{\text {th }}$ place.
Proof. We have:

$$
\begin{align*}
& A_{\sigma, t}=\left(\int_{0}^{h} d y u^{\sigma}\right)_{t}=\left.u^{\sigma}\right|_{h} h_{t}+\int_{0}^{h} d y \sigma_{i} u^{\sigma-1_{i}} u_{i, t}= \\
& =\left.u^{\sigma}\right|_{h}\left(\left.u_{j}\right|_{h} h_{, j}+\int_{0}^{h} d y u_{j, j}\right)+ \tag{4.8a}\\
& +\int_{0}^{h} d y \sigma_{i} u^{\sigma-1_{i}}\left(u_{j} u_{i, j}-u_{i, y} \int_{0}^{y} u_{j, j} d y+V, i\right) . \tag{4.8b}
\end{align*}
$$

We now transform some of the five summands making up the expression (4.8).
The Second summand in (4.8b) becomes:

$$
\begin{align*}
& -\int_{0}^{h} d y\left(u^{\sigma}\right)_{y} \int_{0}^{y} d y u_{j, j}=-\int_{0}^{h} d y\left\{\left(u^{\sigma} \int_{0}^{y} d y u_{j, j}\right)_{y}-u^{\sigma} u_{j, j}\right\}= \\
& =-\left.u^{\sigma}\right|_{h} \int_{0}^{h} d y u_{j, j}+\int_{0}^{h} d y u^{\sigma} u_{j, j} \tag{4.9}
\end{align*}
$$

The second summand in (4.8a) and the first summand in (4.9) cancel out. The first summand in (4.8b) and the second summand in (4.9) combine into

$$
\begin{align*}
& -\int_{0}^{h} d y\left(\left(u^{\sigma}\right),{ }_{j} u_{j}+u^{\sigma} u_{j, j}\right)=\int_{0}^{h} d y\left(u^{\sigma} u_{j}\right),_{j}= \\
& =\left(\int_{0}^{h} d y u^{\sigma} u_{j}\right),_{j}-\left.\left(u^{\sigma} u_{j}\right)\right|_{h} h,_{j} \tag{4.10}
\end{align*}
$$

The first summand in (4.8a) and the second summand in (4.10) cancel out. What remains, the first summand in (4.10) and the third summand in (4.8b), make up the RHS of (4.6).

5 Hamiltonian Properties Of The Evolution Of Moments

In the space of moments A_{σ} 's, consider the following matrix:

$$
\begin{equation*}
B_{\sigma \mid \mu}=\sigma_{i} A_{\sigma+\mu-1_{i}} \partial_{i}+\partial_{i} \mu_{i} A_{\sigma+\mu-1_{i}} \tag{5.1}
\end{equation*}
$$

We shall verify in a moment that this is a Hamiltonian matrix.
Let us now check that our long-wave system (4.6) is Hamiltonian. Take as the Hamiltonian the remainder of the total energy $E(\boldsymbol{\lambda})$ (3.3) after the asymptotic expansion (3.12) has been made:

$$
\begin{equation*}
H=\frac{1}{2} \sum_{i} A_{2_{i}}-\int_{0}^{h} d y U \tag{5.2}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{\delta H}{\delta A_{\mu}}=\frac{\partial H}{\partial A_{\mu}}=\frac{1}{2} \sum_{j} \delta_{2_{j}}^{\mu}+V \delta_{0}^{\mu} \tag{5.3}
\end{equation*}
$$

Thus, the corresponding motion equations,

$$
\begin{equation*}
A_{\sigma, t}=B_{\sigma \mid \mu}\left(\frac{\delta H}{\delta A_{\mu}}\right) \tag{5.4}
\end{equation*}
$$

become, by formula (5.1):

$$
\begin{align*}
& A_{\sigma, t}=\sigma_{i} A_{\sigma+\mu-1_{i}} \partial_{i}\left(V \delta_{0}^{\mu}\right)+\partial_{i}\left(\mu_{i} A_{\sigma+\mu-1_{i}} \frac{1}{2} \sum_{j} \delta_{2_{j}}^{\mu}\right)= \\
& =\sigma_{i} A_{\sigma-1_{i}} V_{, i}+A_{\sigma+1_{i}, i} \tag{5.5}
\end{align*}
$$

These are exactly our motion equations (4.6).
Now, the matrix $B(5.1)$ is linear in the field variables A_{σ} 's. Therefore $[2 ; 4$, Ch. 5], the matrix B is Hamiltonian iff the algebra canonically attached to it by the rule

$$
\begin{equation*}
\mathbf{X}^{t} B(\mathbf{Y}) \sim A_{\sigma}[\mathbf{X}, \mathbf{Y}]_{\sigma} \tag{5.6}
\end{equation*}
$$

is a Lie algebra; here \sim denotes equality modulo $\sum_{i} \operatorname{Im}\left(\partial_{i}\right)$ ("divergencies"). Hence,

$$
\begin{align*}
& \mathbf{X}^{t} B(\mathbf{Y})=X_{\sigma}\left(\sigma_{i} A_{\sigma+\mu-1_{i}} \partial_{i}+\partial_{i} \mu_{i} A_{\sigma+\mu-1_{i}}\right)\left(Y_{\mu}\right) \sim \\
& \sim X_{\sigma} \sigma_{i} A_{\sigma+\mu-1_{i}} Y_{\mu, i}-X_{\sigma, i} \mu_{i} A_{\sigma+\mu-1_{i}} Y_{\mu} \tag{5.7}
\end{align*}
$$

so that

$$
\begin{align*}
& p^{\nu}[\mathbf{X}, \mathbf{Y}]_{\nu}=p^{\sigma+\mu-1_{i}}\left(X_{\sigma} \sigma_{i} Y_{\mu, i}-Y_{\mu} \mu_{i} X_{\sigma, i}\right)= \\
& =\frac{\partial}{\partial p_{i}}\left(X_{\sigma} p^{\sigma}\right) \cdot \frac{\partial}{\partial x_{i}}\left(Y_{\mu} p^{\mu}\right)-\frac{\partial}{\partial p_{i}}\left(Y_{\mu} p^{\mu}\right) \cdot \frac{\partial}{\partial x_{i}}\left(X_{\sigma} p^{\sigma}\right) . \tag{5.8}
\end{align*}
$$

We see that we indeed get a Lie algebra of functions on $T^{*} \mathbf{R}^{N}$ polynomial in the p 's (the coordinates in the fibers $T^{*} \mathbf{R}^{N} \rightarrow \mathbf{R}^{N}$.) This is a particular case of the general construction in [3] attaching a Hamiltonian matrix to a local Lie algebra. For $N=1$, this interpretation of the Hamiltonian matrix $B(5.1)$ is due to Lebedev [7].

For any Hamiltonian $H=H(\{A\})$, denote

$$
\begin{equation*}
H_{\sigma}=\frac{\delta H}{\delta A_{\sigma}} \tag{5.9}
\end{equation*}
$$

the corresponding variational derivative. Then [3, formula (22)] the evolution in the moments space

$$
\begin{equation*}
A_{\sigma, t}=B_{\sigma \mid \mu}\left(H_{\mu}\right)=\left(\sigma_{i} A_{\sigma+\mu-1_{i}} \partial_{i}+\partial_{i} \mu_{i} A_{\sigma+\mu-1_{i}}\right)\left(H_{\mu}\right) \tag{5.10}
\end{equation*}
$$

is implied by the evolution in the (h, \boldsymbol{u})-space:

$$
\begin{align*}
& h_{t}=\left(\mu_{i} A_{\mu-1_{i}} H_{\mu}\right)_{,_{i}} \tag{5.11a}\\
& u_{s, t}=\mu_{i} u^{\mu-1_{i}} u_{s, i} H_{\mu}+u^{\mu} H_{\mu, s}-u_{s, y} \int_{0}^{y} d y\left(\mu_{i} u^{\mu-1_{i}} H_{\mu}\right)_{i} \tag{5.11b}
\end{align*}
$$

For $N=1$, this general system first appeared in $[5,6]$. For general N, the system (5.11) has almost as many remarkable properties as its $N=1$ version. We next examine one such property.

6 Local Flows In The Physical Space

When the velocity $\boldsymbol{u}=\boldsymbol{u}(\boldsymbol{x}, y, t)$ is y-independent, the integro-differential system (5.11) assumes a purely differential form

$$
\begin{align*}
& h_{t}=\left(\mu_{i} A_{\mu-1_{i}}^{*} H_{\mu}^{*}\right)_{, i} \tag{6.1a}\\
& u_{s, t}=\mu_{i} u^{\mu-1_{i}} u_{s, i} H_{\mu}^{*}+u^{\mu} H_{\mu, s}^{*} \tag{6.1b}
\end{align*}
$$

where

$$
\begin{align*}
& A_{\mu}^{*}=h u^{\mu} \tag{6.2a}\\
& H^{*}=H(A)^{*}=H\left(A^{*}\right), H_{\mu}^{*}=\left(H_{\mu}\right)^{*}, \tag{6.2b}
\end{align*}
$$

and ${ }^{*}$ denotes the reduction homomorphism that sends A_{μ} into

$$
\begin{equation*}
A_{\mu}^{*}=\int_{0}^{h} u^{\mu} d y=h u^{\mu} . \tag{6.3}
\end{equation*}
$$

Proposition 6.4. (i) The system (6.1) is Hamiltonian, with the Hamiltonian H^{*}, and with the Hamiltonian matrix b :

$$
\left.b=\begin{array}{c}
 \tag{6.5}\\
h \\
u_{s}
\end{array} \begin{array}{cc}
h & u_{r} \\
0 & \partial_{r} \\
\partial_{s} & \frac{u_{s, r}-u_{r, s}}{h}
\end{array}\right)
$$

(ii) The homomorphism * (6.2a) is Hamiltonian between the Hamiltonian structures B (5.1) and b (6.5).

Proof. (i) We have:

$$
\begin{align*}
& \frac{\delta H^{*}}{\delta h}=\left(\frac{\delta H}{\delta A_{\mu}}\right)^{*} \frac{\partial A_{\mu}^{*}}{\partial h}=H_{\mu}^{*} u^{\mu}, \tag{6.6}\\
& \frac{\delta H^{*}}{\delta u_{k}}=\left(\frac{\delta H}{\delta A_{\mu}}\right)^{*} \frac{\partial A_{\mu}^{*}}{\partial u_{k}}=H_{\mu}^{*} \frac{\partial\left(h u^{\mu}\right)}{\partial u_{k}}= \\
& =H_{\mu}^{*} \mu_{k} A_{\mu-1_{k}}^{*}=H_{\mu}^{*} h \mu_{k} u^{\mu-1_{k}} . \tag{6.7}
\end{align*}
$$

The not-yet verified as Hamiltonian matrix b (6.5) produces the motion equations

$$
\begin{align*}
& h_{t}=\left(\frac{\delta H^{*}}{\delta u_{r}}\right)_{, r} \tag{6.8a}\\
& u_{s, t}=\left(\frac{\delta H^{*}}{\delta h}\right)_{, s}+\frac{1}{h}\left(u_{s, r}-u_{r, s}\right) \frac{\delta H^{*}}{\delta u_{r}} . \tag{6.8b}
\end{align*}
$$

By formula (6.7a), equations (6.1a) and (6.8a) are identical.
To show that equations $(6.1 b)$ and $(5.8 b)$ coincide, we need to verify that

$$
\begin{align*}
& \mu_{i} u^{\mu-1_{i}} u_{s, i} H_{\mu}^{*}+u^{\mu} H_{\mu, s}^{*} \stackrel{?}{=}\left(\frac{\delta H^{*}}{\delta h}\right)_{, s}+\frac{1}{h}\left(u_{s, r}-u_{r, s}\right) \frac{\delta H^{*}}{\delta u_{r}} \\
& {[\text { by }(6.6,7)]=\left(u^{\mu} H_{\mu}^{*}\right)_{, s}+\left(u_{s, r}-u_{r, s}\right) H_{\mu}^{*} \mu_{r} u^{\mu-1_{r}}} \tag{6.9}
\end{align*}
$$

which is equivalent to (no sum on μ):

$$
\begin{equation*}
\mu_{i} u^{\mu-1_{i}} u_{s, i} \stackrel{?}{=}\left(u^{\mu}\right),_{s}+\left(u_{s, r}-u_{r, s}\right) \mu_{r} u^{\mu-1_{r}}, \tag{6.10}
\end{equation*}
$$

which is obvious.
Now, the reason the matrix b (6.5) is Hamiltonian lies in the origin of that matrix. Consider the subalgebra of Hamiltonians in the A-space which depend upon the A_{μ} 's with $|\mu| \leq 1$, where

$$
\begin{equation*}
|\mu|=\left|\left(\mu_{1}, \cdots, \mu_{N}\right)\right|=\Sigma_{i} \mu_{i} \tag{6.11}
\end{equation*}
$$

Formula (5.1) shows that this is indeed a Hamiltonian subalgebra, governed by the Hamiltonian matrix

$$
\tilde{b}=\begin{array}{cc}
& A_{0} \tag{6.12}\\
A_{1_{i}}
\end{array}\left(\begin{array}{cc}
A_{0} & A_{1_{j}} \\
0 & \partial_{j} A_{0} \\
A_{0} \partial_{i} & A_{1_{j}} \partial_{i}+\partial_{j} A_{1_{i}}
\end{array}\right) .
$$

Passing to the coordinates

$$
\begin{equation*}
h=A_{0}, \quad u_{j}=A_{0}^{-1} A_{1_{j}}, \quad 1 \leq j \leq N \tag{6.13}
\end{equation*}
$$

we recover the Hamiltonian matrix b (6.5);
(ii) We have to verify that

$$
\begin{equation*}
J b J^{t}=B^{*} \tag{6.14}
\end{equation*}
$$

where J is the Frechét derivative of the homomorphism *:

$$
\left.J=A_{\sigma} \quad \begin{array}{cc}
h & u_{i} \tag{6.15}\\
u^{\sigma} & \mid \\
\sigma_{i} h u^{\sigma-1}
\end{array}\right) .
$$

Multiplying $J b J^{t}$ through, formula (6.14) reduces to the identity

$$
\begin{align*}
& \sigma_{i} h u^{\sigma-1_{i}} \partial_{i} u^{\mu}+u^{\sigma} \partial_{j} \mu_{j} h u^{\mu-1 j}+\sigma_{i} u^{\sigma-1_{i}}\left(u_{i, j}-u_{j, i}\right) \mu_{j} h u^{\mu-1_{j}} \stackrel{?}{=} \\
& \stackrel{?}{=} \sigma_{i} h u^{\sigma+\mu-1_{i}} \partial_{i}+\partial_{j} \mu_{j} h u^{\sigma+\mu-1_{j}} \tag{6.16}
\end{align*}
$$

which is obvious.
For $N=1$, we recover results from $[5,6]$.

References

[1] Benney D J, Some Properties Of Long Nonlinear Waves, Stud. Appl. Math. 11 (1973), L45L50.
[2] Kupershmidt B A, On Dual Spaces of Differential Lie Algebras, Physica D 7 (1983), 334-337.
[3] Kupershmidt B A, Hydrodynamical Poisson Brackets and Local Lie Algebras, Phys. Lett. A 121 (1987), 167-174.
[4] Kupershmidt B A, The Variational Principles of Dynamics, World Scientific, Singapore, 1992.
[5] Kupershmidt B A and Manin Yu I, Long-Wave Equation with Free Boundaries. I. Conservation Laws, Funct. Anal. Appl. 11:3 (1977), 31-42 (Russian); 188-197 (English).
[6] Kupershmidt B A and Manin Yu I, Equations of Long Waves with a Free Surface. II Hamiltonian Structure and Higher Equations, Funct. Anal. Appl. 12:1 (1978), 25-37 (Russian); 20-29 (English).
[7] Lebedev D R, Benney's Long Waves Equations: Hamtilonian Formalism, Lett. Math. Phys. 3 (1979), 481-488.

