
Quantum-behaved Particle Swarm Optimization Algorithm for Solving Nonlinear 
Equations 

Xiaofeng Zhang  
College of Information Engineering, Nanchang 

Hangkong University 
Nanchang, China 

xfzhang@163.com 

Guifang Sui 
College of Information Engineering, Nanchang 

Hangkong University 
Nanchang, China 

sgf320428@126.com  
 
 

Abstract—A quantum-behaved particle swarm optimization 
algorithm is presented in this paper for solving nonlinear 
equations. The positions of particle are coded by probability 
amplitudes of qubits that are updated by quantum rotation 
gates in this method. The corresponding real number solution 
at specified interval can be extracted by this algorithm for 
solving nonlinear equations. Compared to real traditional 
method, the simulation results show that this algorithm is more 
accurate and effective. 

Keywords-Quantum Particle Swarm Optimization, Quantum 
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I.  INTRODUCTION  

Most of engineering problems can be described by 
nonlinear equations. Therefore, there is a necessity to 
investigate such numerical methods in order to provide 
approximate solutions as well as meeting certain precision. 
Worldwide researchers have been dedicating to developing 
more effective methods to solve nonlinear equations. 
However, these methods can only be used by meeting some 
rigorous conditions, which also have some drawbacks for the 
case of solving multi-dimensional complex equations. For 
instance, Newton method having the second order 
convergence is an important method for solving nonlinear 
equations, perhaps you can sentence with red color which 
demands that initial vector is selected in the adjacent 
solutions. If the initial vector selection is inaccurate, Newton 
method may be non-convergence and time costing, causing 
the local extremism. 

Particle Swarm Optimization(PSO) is a new global 
optimized evolutionary algorithm, which is suggested by 
American psychologist Kennedy and electrical engineer 
Eberhart who were inspired by the predatory behavior of 
birds in 1995[1]. However, in practical application, PSO 
algorithm has some shortcomings, such as the ease to 
generate premature convergence, long computational time, 
and low global optimization capability. In order to overcome 
such drawbacks, a lot of efforts have been made to improve 
PSO algorithm, but there is premature convergence 
phenomenon [2]. Quantum-inspired evolutionary 
algorithm(QEA) based on the concept and theory of quantum 
computing [3] is a new probability evolutionary algorithm, 
obtained from observing the quantum state of chromosomes 
to generate the needed binary solution. However, it is a 
probabilistic procedure with a great deal of randomness. In 

order to avoid the observation of the randomness and 
frequent decoding from binary to decimal, probability 
amplitude of qubit is directly expressed as solutions of 
optimization problems in Ref.[4]. Therefore, a Quantum 
Particle Swarm Optimization(QPSO) algorithm is presented 
here by incorporating PSO with QEA. This algorithm 
directly codes position of particle by probability amplitudes 
of qubits and updates probability amplitude of qubits by 
quantum rotation gates to realize update of the particle 
location, search of the optimal position and the variation of 
qubits by quantum NOT gate, which can increase the 
diversity of the population and avoid premature convergence. 
Because each qubit has two probability amplitudes, each 
particle occupies both locations of the optimization space. 
Meanwhile, due to the use of double probability amplitude 
encoding mechanism, the chance for particles to locate their 
optimal positions is increased significantly. This algorithm 
has a strong search capability and optimizing efficiency, 
especially for complex functions optimization and high-
dimensional optimization problems. In this case, solving 
nonlinear equations is transformed into the function extreme 
value optimization problems in this paper, and subsequently 
quantum-behaved particle swarm optimization algorithm is 
proposed for solving nonlinear equations. This method 
improves algorithmic optimization speed, local search ability 
and global optimization ability.llow. 

II. QUANTUM CALCULATION  

A. Qubits  

A qubit is defined as the smallest unit of information in 
QEA, which can be described by a pair of numbers ( )βα ,  as 

[ ]Tβα, . A qubit may be in the 0  state, in the 1  state, or in 

any linear superposition of the two. The state of a qubit can 

be represented as 10 βαφ += , where 1
22 =+ βα , 

2α  

gives the probability of the qubit that will be found in the 0  

state and β  gives the probability of the qubit that will be 

found in the 1  state. Therefore, by probability amplitude 

qubits can be expressed as [ ]Tβαφ ,= . 
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B. Quantum Gates  

In quantum calculation, we can achieve some logic 
functions by carrying out a series of unitary transformation 
with quantum state. Since the role of the transformation is 
equivalent to the role of logic gates, remove so quantum gate 
is quantum device of logical transformation within a certain 
time interval. Quantum gate is the basis of physics 
implement quantum computing, and contains the 
characteristics of quantum computing. There is existing 
proof [5] that the quantum gates contain universal quantum 
gates groups, which is similar to the commonality of NAND 
gate of classic bit. Consequently, the arbitrary quantum gates 
can be composed of these quantum gates groups. It should be 
noted that the most basic universal quantum gates group is 
composed of one phase shift gate and two controlled NOT 
gate. 

First, one phase shift gate is defined as  
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Obviously ( )θR  plays the role of phase shift to realize 
the search of optimal location of the particles in solving 
equations. 

The role of quantum NOT gate is to exchange two qubits 
probability amplitudes, which is defined as  
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Quantum NOT gate plays a role as a phase rotation in 
solving equations, which realizes particle position variation 
to avoid premature convergence. Therefore controlled NOT 
gate [6] can be constructed as 
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According to the value of controlled parameter k, its 
controlled effect can be expressed as  
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III. QUANTUM PARTICLE SWARM ALGORITHM  

A. Initializing Population 

In QPSO, due to the code randomness in population 
initialization, we code the quantum current position using the 
probability amplitude of qubits, giving rise to:  
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where rndij ×= πθ 2 ; rnd is the random number 

between 0 and 1, where i=1,2,…,m; j=1,2,… ,n; m is the 
population size; n is the number of spatial dimensions. 

B. Solution Space Transformation 

In QPSO, due to the calculation of particle current 
advantages and disadvantages, we need to transform the 
solution space. Using linear transformation, remove ‘the’ 
every probability amplitude of qubits can be mapped from 
the unit space into the solution space of optimization 
problem. However, given that each probability amplitude of 
particle corresponds to an optimized variable of the solution 
space, we define the domain of the variable

jX of 

optimization problem and the the j-th qubit of particle iP  

to be [ ]ii ba ,  the j-th qubit of particleis and [ ]Ti
j

i
j βα , ,  

respectively. The corresponding solution space variable is 
given by: 
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Namely             
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where i=1,2, ...  ,m; j=1,2, ...  ,n. 
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C. Updating Particle State 

In QPSO, updates of particles state can be described as 
the updates of qubit argument angle incremental in each 
particle and the updates of qubit probability amplitude of 
quantum rotation gates. Such a strategy is shown as follows: 

We let the particles 
iP  search for the optimal location 

lP , and the entire population search for the optimal 

location 
gP . The update of qubit argument angle 

incremental in particle iP  is 

( ) ( ) ( ) ( )glijij rcrctwt θθθθ Δ+Δ+Δ=+Δ 22111       (11) 
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where i =1,2, ... , m; j=1,2, ... ,n; k=l, g; w is the 

inertia factor, 21,cc  are constant, 1c  is own factor and 2c  is 

global factor; 21,rr  are the random numbers between 0 and 1, 

lθΔ  is qubit argument angle incremental of the particle that 

search for the optimal position, gθΔ is qubit argument angle 

incremental of the entire population that search for the 
optimal position. The update of qubit probability amplitude 
of quantum rotation gates in particles 

iP  is 
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The angular size and orientation of quantum rotation 
gates are very important and affect directly the convergence 
speed and optimization direction. Definition is shown below 
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the relationship of angle is  

( ) t
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where i=1,2, ... ,m; j=1,2, ... ,n; 0θ is the initial value, 

t is optimization step. The determinating rules of angular 
orientation[7]：the orientation is ( )ijΑ− sgn  when 0≠Αij

, 

the orientation can be positive and negative when 0=Αij
. 

The coding after the particle update is 
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D. Variation Processing 

In QPSO, The quantum NOT gate is adopted to realize 
particle location variations, to change the probability 
amplitude of particle location, and to flip particle 

optimization direction. Meanwhile, by introducing the 
mutation operator, this method not only avoids the loss of 
the population diversity in the search process, but also 
prevents premature convergence and increases the 
opportunities of particles search for the optimal location. In 

particle iP , the variation of qubit probability amplitude of 

quantum NOT gate is                      
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IV.  QPSO FOR SOLVING NONLINEAR EQUATIONS 

A. Problem Description 

The general mathematical model of nonlinear equations 
is 
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Considering problem: ( )
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minimum value 0 if and only if ( ) 0, 21 =ni xxxf  . So the 

problem of solving arbitrary multivariate nonlinear equations 
is transformed into solving multivariate nonlinear minimum 
value. The solution of (the) minimal value is 0 or close to 0, 
which is the solution of the equation ( ) 0, 21 =ni xxxf  . We 

suppose that p=1, then  
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B. Numerical Experiments 

In order to examine the performance of quantum particle 
swarm algorithm, the numerical simulation is performed 
using the examples which is given in Ref. [8]. Simulation 
parameter parameters are given as follows: population size 
is 50; quantum bits is 2; limited algebra is 500; inertia factor 
is 0.5; autogenous factor is 2; global factor is 2; mutation 
probability is 0.05 and the nonlinear equations of simulation 
is 
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TABLE I.  NUMERICAL SIMULATION RESULTS   

Algorith
m 

initial point approximate 
solution 

Iterations 
times 

converging 
conditions 
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Literatur
e [8] 

non -0.131 789 
994 367 941 

-1.39 856 
980 462 69 

770 Convergence

Fsolve 
function 

（-3,-3） -0.131 789 
994 380 944 

-1.39 856 
980 442 676 

22 Convergence
(concern 

initial point)

Newton 
method 

(-0.1,-0.5） -0.131 789 
991 803 407  

-1.39 856 
984 393 425 

5 convergence 
(concern 

initial point)

QPSO non -0.131 789 
993 092 176 

-1.39 856 
982 453 578 

371 Convergence
(operation10t

imes 
convergence

8times） 

C. Results Analysis 

Experimental results show that the traditional methods 
require the rigorous initial value condition for solving 
nonlinear equations. If the initial value choice is inaccurate, 
it will affect function convergence to produce optimal 
solutions of target function. Although Ref.[8] has no initial 
value, it limits the search interval of the optimal value. 
However, since QPSO algorithm does not limit the search 
interval of optimal solutions, and it is the global search in 
range of all real numbers field, their approximate solutions 
are more accurate. Therefore, QPSQ can be regarded as a 
more effective and accurate method for solving nonlinear 
equations compared to the traditional methods. 

V. CONCLUSIONS 

A quantum particle swarm optimization algorithm is 
applied to solve nonlinear equations. The capability of such 
an algorithm to generate faster convergence speed, better 
objective function and more accurate solution precision than 
the traditional methods is demonstrated. Particle swarm 

algorithm as a kind of more effective evolution algorithm is 
proposed for solving nonlinear equations.  
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