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Abstract

An implicit solution to the vanishing of the so-called Universal Field Equation, or
Bordered Hessian, which dates at least as far back as 1935 [1] is revived, and derived
from a much later form of the solution. A linear ansatz for an implicit solution of
second order partial differential equations, previously shown to have wide applicability
[3] is at the heart of the Chaundy solution, and is shown to yield solutions even to the
linear wave equation.

1 Introduction

Some years ago, the notion of a Universal Field Equation, so called because it admits an
infinite number of inequivalent Lagrangians [4] was introduced. Such equations arise in
several ways; in 3 dimensions as the condition for developable surfaces [2], or more generally
as a measure of the total curvature of a surface φ(x, y, z) = 0 [1], or as a consequence of
the the hydrodynamic equations for vanishing total rate of change of velocity [7], i.e.

D

dt
~v =

∂

∂t
~v + ~v · ∇~v = 0.

This last approach is sketched in the first section where it is illustrated for the case of a
two component vector field. If u(t, x, y) and v(t, x, y) are expressible in terms of a single
function φ(t, x, y), then it is shown that the consequence is the Universal Field Equation,
which Chaundy more prosacially calls the bordered Hessian;
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This equation is a natural generalisation of the Bateman equation;
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about which much is known [4]. In particular, the general solution to this Bateman
equation is given by constraining two arbitrary functions of φ; say f1(φ) and f2(φ) by the
relation

tf1(φ) + xf2(φ) = 1.

The implicit solution of this equation gives the general solution (dependent upon two
arbitrary functions, as expected for a second order partial differential equation) to the
Bateman equation. The ubiquity of this linear construction of an implicit solution to
a second order partial differential equation, which has been explored in [3], is further
investigated here for not only equations of the form (1.1), but even the linear wave equation
in arbitrary dimension. It turns out that a solution to (1.1) has been known for some
time,[1] and maybe earlier; in ignorance of this solution Govaerts and I found a solution
by means of Legendre transforms much later [8]. There is an unpublished solution on
similar lines to the solution of the Monge-Ampère equation in [5]. The first two methods
of solution are explained and related in the third section, which gives the most direct proof
of the solution. The main purpose of this paper is to publicise Chaundy’s forgotten solution
and on the way collect some results on the two dimensional nonlinear wave equation from
which the Universal Field Equation arises as a second order equation.

2 Two fields-first order

This section reviews the simplest case beyond that of Bateman which occurs for a two com-
ponent velocity field (u, v) in one time, two space dimensions. The first order equations
(sometimes called after Monge) are

∂u

∂t
= u

∂u

∂x
+ v

∂u

∂y
, (2.1)

∂v

∂t
= u

∂v

∂x
+ v

∂v

∂y
. (2.2)

These equations admit general solutions of the form;

u = F (x − ut, y − vt); v = G(x − ut, y − vt)

in terms of two arbitrary functions, F, G. [5][6] This is easy to verify; the easiest way to
find a constructive derivation is to change the nature of the independent variables; instead
of thinking of (u, v) as given in terms of the variables (t, x, y), think instead of regarding
(x, y) as functions of (t, u, v). Then the equations of transformation are;

∂u

∂t
=

∂x
∂t

∂y
∂v

− ∂x
∂v

∂y
∂t

∂x
∂u

∂y
∂v

− ∂x
∂v

∂y
∂u

,

∂u
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=
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∂u
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− ∂x
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∂u
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with similar equations for derivatives of v. In terms of the interchanged derivatives, the
equations (2.1, 2.2) become

(

∂x

∂t
− u

)

∂y

∂v
−

(

∂y

∂t
− v

)

∂x

∂v
= 0,

(

∂x

∂t
− u

)

∂y

∂u
−

(

∂y

∂t
− v

)

∂x

∂u
= 0.

These equations, for a non trivial solution yield

x − ut = f(u, v), y − vt = g(u, v). (2.3)

These solutions are equivalent to the general solution given above. The generalisation to
n equations is immediate; We have equations of the type
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together with similar equations where each subsequent row of det
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∂xj

∂uk
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∣

∣

is replaced in

turn by the first row of the above determinant (2.4). There exists an infinite number of
Lagrangians for (2.1, 2.2).

L =
∂A(u, v)

∂v

∂u

∂t
+ u

∂A(u, v)

∂v

∂u

∂x
+

(

v
∂A(u, v))

∂v
− A(u, v)

)

∂u

∂y
. (2.5)

Here A(u, v) is an arbitrary function of (u, v). If u(φ) and v(φ) are functions of a single
argument φ(x, y, t) then you can permute derivatives

∂u

∂x

∂v

∂y
=

∂u

∂y

∂v

∂x
.

This leads to the Universal Field Equation for φ (1.1), since the two Monge equations
become the single equation

∂φ

∂t
+

∂u

∂φ

∂φ

∂x
+

∂v

∂φ

∂φ

∂y
= 0. (2.6)

Forming the eliminant of this equation, together with its derivatives with respect to
(t, x, y) gives the determinantal equation (1.1).

3 Chaundy’s solution

Consider four arbitrary functions of two variables, (φ, u) denoted by Fi(φ, u), i = 1 . . . 4.
Actually the fourth function is redundant and may be taken as 1. These functions are
subject to the following constraints;

tF1(φ, u) + xF2(φ, u) + yF3(φ, u) = F4(φ, u), (3.1)

t
∂

∂u
F1(φ, u) + x

∂

∂u
F2(φ, u) + y

∂

∂u
F3(φ, u) =

∂

∂u
F4(φ, u). (3.2)
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The first equation represents a two parameter family of planes; this together with the
second , upon elimination of the parameter u gives the envelope of these planes; hence the
connection with the theory of developable surfaces as presented in [2]. Notice that in fact
(3.1) and indeed (3.2) are of the form of the universal solution, [3], the linear ansatz which
seems applicable to many second order partial differential equations. This solution may
be verified in the following manner; calculate the first and second derivatives ; setting

µ = t
∂F1

∂φ
+ x

∂F2

∂φ
+ y

∂F3

∂φ
−

∂F4

∂φ
.

λ = t
∂2F1

∂φ2
+ x

∂2F2

∂φ2
+ y

∂2F3

∂φ2
−

∂2F4

∂φ2
.

typical derivatives are given by

φt =
−F1

µ

φtt =
1

µ

(

−2
∂F1

∂φ
φt − (φt)

2λ −
∂F1

∂u
ut

)

,

φtx =
1

µ

(

−
∂F1

∂φ
φx −

∂F2

∂φ
φt − φtφxλ −

∂F1

∂u
ux

)

.

Consistency with the alternative construction of φtx by first differentiating with respect
to x requires

∂F1

∂u

∂u

∂x
≡

∂F2

∂u

∂u

∂t
(3.3)

etc. Substitution into (1.1) together with some elementary row and column operations
shows that the determinant indeed vanishes. Since there are initially four arbitrary func-
tions, one of which is redundant, and another is involved in the second constraint, two
remain arbitrary, as is required by the general solution of a second order partial differential
equation.

4 Linearization by Legendre Transforms

The Legendre Transform was employed in [8] to linearize the Universal Field Equation
This transform, which is clearly involutive, has the flavour of a twistor transform. In a
multivariable generalisation the Universal Field Equation runs as follows:

∂ξα

∂xn
+

n−1
∑

β=1

ξβ

∂ξα

∂xβ

= 0 (4.1)

Introduce a dual space with co-ordinates ξi, i = 1, . . . , d and a function w(ξi) defined
by

φ(x1, x2, . . . , xd) + w(ξ1, ξ2, . . . , ξd) = x1ξ1 + x2ξ2 + . . . , xdξd. (4.2)

ξi =
∂φ

∂xi

, xi =
∂w

∂ξi

, ∀i. (4.3)
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To evaluate the second derivatives φij in terms of derivatives of w it is convenient to intro-
duce two Hessian matrices; Φ, W with matrix elements φij and wξiξj

= wij respectively.
Then assuming that Φ is invertible, ΦW = 11 and

∂2φ

∂xi∂xj
= (W−1)ij ,

∂2w

∂ξi∂ξj
= (Φ−1)ij . (4.4)

The effect of the Legendre transformation upon the equation (4.1) is immediate; in the
new variables the equation becomes simply

∑

i,j

ξiξj
∂2w

∂ξi∂ξj

= 0. (4.5)

a linear second order equation for w. The general solution of this equation is immediate;
w = f1(ξ1 . . . ξd) + f2(ξ1 . . . ξd) where f0 is an arbitrary homogeneous function of weight
zero and f1 is an arbitrary homogeneous function of weight one. Then the general solution
of the Universal Field Equation is given implicitly as the eliminant of the variables ξi from
the equations

φ(x1, x2, . . . , xd) =
∑

xjξj − w(ξ1, ξ2, . . . , ξd), xi =
∂w

∂ξi
. (4.6)

This procedure may be used to verify the general solution of the Bateman equation.[8]
Note that (4.6) implies that

∑

xi
∂φ

∂xi
= f1(ξi). (4.7)

Hence if f1 = 0 then φ is an arbitrary homogeneous function of degree zero in its arguments.
How does does this solution equate to Chaundy’s? By differentiating w with respect to ξi

xi =
∂f0

∂ξi
+

∂f1

∂ξi
. (4.8)

Multiplying by ξi and summing, having regard to the homogeneities;
∑

xiξi = f1; φ(x1, x2, . . . xd). = f0. (4.9)

The crucial observation is that each ξ may be regarded as a function of d − 1 arguments
as a consequence of the homogenieties, i.e.

ξj = ξj(φ, uk), k = 1 . . . d − 2.

Additionaly, from the second member of (4.9),

∂f0

∂uk

= 0.

Thus from (4.6),
∑

j

xjξj(φ, ξi) = f1(φ, ui),

∑

j

xj
∂ξj

∂uk

=
∂f1

∂uk

.

These are precisely the same as Chaundy’s constraints. The elimination of the variables
uk from this set, provides an implicit solution of the universal field equation, or bordered
Hessian.
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5 Monge Ampère

A similar result can be proved for the homogeneous Monge-Ampère , or vanishing Hessian
equation;

det

∣

∣

∣

∣

∂φ

∂xi∂xj

∣

∣

∣

∣

= 0. (5.1)

In fact, as noted in [1], there is a close connection between this problem and the universal
field equation; in the case of n variables xi, i = 1 . . . n, if φ(xi) = 0 is solved implicitly
for xn ≡ z = z(xj), j = 1 . . . n − 1, then

det

∣

∣

∣

∣

∂z

∂xi∂xj

∣

∣

∣

∣

=
1

φn+1
det

∣

∣

∣

∣

∣

0 ∂φ
∂xi

∂φ
∂xj

∂2φ
∂xixj

∣

∣

∣

∣

∣

(5.2)

In the case of three independent variables, (x1, x2, x3) the equation is given,[1] by

φ(x1, x2, x3) = x1G1(u, v) + x2G2(u, v) + x3G3(u, v) − G4(u, v)

∂

∂u
G4(u, v) = x1

∂

∂u
G1(u, v) + x2

∂

∂u
G2(u, v) + x3

∂

∂u
G3(u, v) (5.3)

∂

∂v
G4(u, v) = x1

∂

∂v
G1(u, v) + x2

∂

∂v
G2(u, v) + x3

∂

∂v
G3(u, v) (5.4)

From this it is easy to calculate second derivatives of φ,

φxixj
=

∂Gi

∂u
uxj

+
∂Gi

∂v
vxj

+
∂Gj

∂u
uxi

+
∂Gj

∂v
vxi

(5.5)

as a consequence of (5.3) and (5.4). From this representation of the second derivative it is
easy to see that the Hessian (5.1) vanishes, and the principle of construction can be easily
inferred for the n × n case. A general solution to this equation has also been given by
Leznov and myself. [5] Note that

i=3
∑

i=1

φxi
xi =

i=3
∑

i=1

Gixi = φ(x1, x2, x3) + G4(u, v) (5.6)

so if G4(u, v) = 0, then φ is homogeneous of weight one, a well known solution which
makes the Hessian vanish.

6 The linear wave equation

Surprisingly, the wave equation in n space dimensions,

∂2u

∂t2
−

i=n
∑

i=1

∂2u

∂x2
i

= 0 (6.1)

also yields to a solution in terms of the linear ansatz

tF0(u) +
i=n
∑

i=1

xiFi(u) = 1 (6.2)
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where the coefficients are arbitrary functions of φ. Denoting t by x0, the wave equation
becomes

−

(

∑j=n
j=1 xjF

′′

j

)(

F 2
0 −

∑k=n
k=1 F 2

k

)

(

∑j=n
j=0 xjF

′

j

)3 +
2
(

F ′

0F0 −
∑j=n

j=1 F ′

jFj

)

(

∑j=n
j=0 xjF

′

j

)2 = 0, (6.3)

and primes denote, as usual, differentiation with respect to the argument u. This equation
will be satisfied provided the functions Fj are subject to the single constraint

F0(u)2 −

k=n
∑

k=1

Fk(u)2 = 0. (6.4)

That such a constraint is necessary may be seen from the observation that while the
ansatz and the universal equations are form invariant under a functional change in φ or u,
the wave equation does not possess this property. In fact, the solutions obtained by this
method also satisfy the null wave vector identity

(

∂u

∂x0

)2

−

k=n
∑

k=1

(

∂u

∂xi

)2

= 0. (6.5)

and are thus not the most general solution. However, the general solution may be con-
structed from a superposition of such solutions by invoking the additive principle of so-
lutions to linear equations; eg in 2+1 dimensions we may take F0(u) = 1

f−1(u) , F1(u) =
1

f−1(u)
cos(θ), F2(u) = 1

f−1(u)
sin(θ). Then

u = f(x0 + x1 cos(θ) + x2 sin(θ), θ) (6.6)

is the standard solution to the wave equation, for an arbitrary function f , which may also
depend upon θ and the general solution is obtained from this by integration over θ [9]

7 Conclusion

The linear ansatz, (6.2), has been shown to provide a universal framework in seeking
solutions to partial differential equations of second order, even including the linear case.
A feature of the equations studied here is that they are all invariant under linear (Lorentz)
transformations of the independent variables, but this is not essential [3]
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