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Abstract

We investigate a propagation of solitons for nonlinear Schrödinger equation under
small driving force. The driving force passes through the resonance. The process
of scattering on the resonance leads to changing of number of solitons. After the
resonance the number of solitons depends on the amplitude of the driving force.

Introduction

Nonlinear Schrödinger equation (NLSE) is a mathematical model for wide class of wave
phenomenons from the signal propagation into optical fibre [1, 2] to the surface wave
propagation [3]. This equation is integrable by inverse scattering transform method [4]
and can be considered as an ideal model equation. The perturbations of this ideal model
lead to nonintegrable equations. Here we consider such nonintegrable example which is
NLSE perturbed by the small driving force.

i∂tΨ + ∂2
xΨ + |Ψ|2Ψ = ε2feiS/ε2

, 0 < ε ≪ 1. (1)

The perturbed NLSE in form (1) is relative to describing of nonlinear effects of optical
soliton propagation in the presence of an input fast oscillating forcing beam [5].

The most known class of the solutions of NLSE is solitons [4]. The structure of this kind
of solutions is not changed in a case of nonperturbed NLSE. The perturbations usually
lead to modulation of parameters of solitons [6, 7], for driven NLSE see also [8]. Number
of solitons does not change.

In this work we investigate a new effect called the scattering of solitons on the local
resonance. Typical picture for this process may be obtained by numerical simulations (see
fig.1).

Let us explain the terms ’scattering’ and ’resonance’ which is used in the work. Usually
one says ’scattering’ for process when a wave is changed after obstacle. The same process
is studied in our work for solitons which are nonlinear waves of NLSE. The obstacle is
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Figure 1. This picture shows the scattering process of one soliton to two solitons for equa-

tion (1), where amplitude of external force ε = 0.1, S = 0.005t2, f = 2
√

2 cosh−1(0.2x)+

2
√

2 exp(0.2ix) cosh−1(0.2x − 5)+ 2
√

2 exp(−0.2ix) cosh−1(0.2x + 5), initial data is pure soliton

of NLSE at Ψ|t=−200 = 0.2
√

2 cosh−1(0.2x) , resonance curve is t = 0.

a line where the external force has a resonance in the equation for first-order term in
the asymptotic solution for perturbed NLSE. Under ’resonance’ we understand standard
phenomenon of grows solution because of oscillating external force. The resonance phe-
nomenon takes place in a thin domain near some curve usually called a resonance curve.
So we use the term ’local resonance’.

We consider the process of scattering in detail and obtain the connection formula be-
tween pre-resonance and post-resonance solutions. In general case the passage through
the resonance leads to changing of the number of solitons. This effect is based on the phe-
nomenon of soliton generation due to the passage through the resonance by the external
driving force [9].

We found that the scattering of solitary waves on the resonance is a general effect for
the wave propagation in a nonlinear media. In this work we investigate this effect for the
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simplest model. It allows to show the essence of this effect without unnecessary details.

This paper has the following structure. The first section contains the statement of the
problem and the main result. The second section contains the asymptotic construction in
the pre-resonance domain. In the third section we construct the asymptotic solution in
the neighborhood of the resonance curve. The fourth section of the paper is devoted to
construction of the post-resonance asymptotics. Asymptotics are constructed by multiple
scale method [10] and matched [11]. At last five section contains the results of numerical
simulation which justify the obtained asymptotic formulas.

1 Statement of the problem and result

We study the perturbed NLS equation (1) with a special phase of the driving force: S/ε2 =
ε2t2. The amplitude f = f(εx) is a smooth and rapidly vanished function. The small
parameter in the right hand side of the equation is defined as ε2 only for a convenience.

The goal of our work is the study of a slow evolution of the solution with a small
amplitude for the equation (1). In the general case the small amplitude solutions are
defined by the linear Schrödinger equation. However there exists a magic relation between
scales of independent variables of a carrier wave and an amplitude of its envelope function
which leads to the nonlinear Schrödinger equation for the envelope function of the leading-
order term of the asymptotics. This relation was observed for different physical problems
in pioneer works [1, 2, 3]. An example of such relation give the following substitution

Ψ = εU(t2, x1, ε), t2 = ε2t, x1 = εx,

then the equation (1) has the form:

i∂t2U + ∂2
x1

U + |U |2U = ε−1feiS/ε2

. (2)

The strong perturbation with rapid phase for NLSE may be considered as a model for the
high-frequency heating of plasma [12] and leads to the phenomenon of the scattering of
solitons.

It is known if f ≡ 0 then there exists a soliton solution of the NLSE. We’ll show that
for f 6≡ 0 the number of solitons may be changed due to passage through the resonant
curve. The resonant curve defines as a line where the frequency of the driving force is
equal to the eigenfrequency of linearized Schródinger equation. In our case this curve is
t = 0. After passage the resonance the number of solitons depends on amplitude of the
perturbation on the resonance curve t = 0.

In the simplest case the phase is linear function with respect to t S/ε2 = ωt, ω =
const. In general situation the constant frequency of the driving force does not lead to the
scattering of solitons. Let us investigate the driving force with slowly varying frequency.
The most simplest dependence on t for ω has a form ω = ε2t/2. Hence S = ε4t2/2.
Namely the equation with this form of the phase function of the driving force is studied
in this work. The amplitude f of the driving force admit an additional dependency on ε2t
but it leads to complicated formulas and no more.

Let us formulate the result of this work. Below we use the following variables xj =
εjx, tj = εjt, j = 1, 2.
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Let the asymptotic solution of (1) be

Ψ(x, t, ε) = ε
1
u (x1, t2) + O(ε2) as − c < t2 < 0,

where c = const > 0 and
1
u (x1, t2) satisfies

∂t2
1
u +∂2

x1

1
u +| 1

u |2 1
u= 0

and initial condition
1
u |t2=t0 = h1(x1), t0 = const < 0.

Then in the domain 0 < t2 < c the asymptotic solution of (1) has a form

Ψ(x, t, ε) = ε
1
v (x1, t2) + O(ε2), (3)

where
1
v (x1, t2) is a solution of NLSE with initial condition

1
v |t2=0 =

1
u (x1, 0) + (1 − i)

√
πf(x1). (4)

Formula (4) is the main result of the paper. This formula connects the main order

term
1
u of the asymptotic solution before the scattering, external driving force f and

initial condition
1
v for the main order term of the asymptotic solution after the scattering.

This formula is derived in the end of section 4.

Let us explain the result for soliton solution. If in the domain −c < t2 < 0 the solution
has N -soliton form then in the domain 0 < t2 < c the number of solitons is defined by
initial condition (4).

Given analysis is valid at |t2| ≤ C, for ∀C = const. When |ε2t| ≫ 1 the perturbation
force will modulate the parameters of the soliton solution, see [6, 7].

2 Incident wave

In this section we construct the asymptotic solution of equation (1) in pre-resonance
domain. This solution contains two parts. The first part is a specific solution of the
nonhomogeneous equation. This solution oscillates with the frequency of the driving force.
The amplitudes are determined by an algebraic equations. The second part of the solution
is a solution of the homogeneous equation. The solution contains an undefined function
due to integration. This undefined function usually determines by initial condition for the
Cauchy problem.

We construct the formal asymptotic solution in the WKB-like form

Ψ(x, t, ε) = ε
1
u (x1, t2) + ε3 3

u (x1, t2) + ε2
2
B (x1, t2) exp(iS/ε2) +

ε4

(
4
B1 (x1, t2) exp(iS/ε2)+

4
B−1 (x1, t2) exp(−iS/ε2)

)
(5)

+ε5
5
B2 (x1, t2) exp(2iS/ε2).
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To determine the coefficients of the asymptotics substitute (5) into equation (1). It
yields

ε2

(
− S′

2
B −f

)
exp(iS/ε2) + ε3

(
i

1
ut2 +

1
ux1x1

+| 1
u |2 1

u

)

+ε4

((
− S′

4
B1 +i

2
Bt2 +

2
Bx1x1

+2| 1
u |2

2
B

)
exp(iS/ε2) +

+

(
S′

4
B−1 +

1
u 2

2
B

∗

)
exp(−iS/ε2)

)

ε5

(
i

3
ut2 +

3
ux1x1

+2| 1
u |2 3

u +
1
u 2 3

u ∗ + 2
1
u |

2
B |2 +

(
− 2S′

5
B2 +

1
u ∗

2
B 2

)
exp(2iS/ε2)

)
= ε6R(t2, x1).

The residue part of the asymptotics has a form

R(t2, x1) = O(|
2
B |3 + ε3| 3

u |3 + ε6|
4
B1 |3 + ε6|

4
B−1 |3 + ε9|

5
B2 |3). (6)

Collect the terms with the same order of ε up to the order of ε5 and reduce similar

terms. It yields differential equations for
1
u,

3
u and algebraic equations for

2
B,

4
B±1 and

5
B2.

i
1
ut2 +

1
ux1x1

+| 1
u |2 1

u= 0, (7)

i
3
ut2 +

3
ux1x1

+2| 1
u |2 3

u +
1
u 2 3

u ∗ = −2|
2
B |2 1

u, (8)

−S′
2
B= f, (9)

−S′
4
B1= i

2
Bt2 +

2
Bx1x1

+| 1
u |2

2
B, (10)

S′
4
B−1= − 1

u 2
2
B

∗, (11)

−2S′
5
B2=

1
u ∗

2
B

2. (12)

The functions
1
u,

3
u are uniquely determined by initial conditions at the moment t2 = t0.

We suppose that t0 = const < 0 and

1
u |t2=t0 = h1(x1);

3
u |t2=t0 = h3(x1);

where functions h1, h3 are smooth and rapidly vanish as |x1| → ±∞.

It’s known the solutions
1
u and

3
u exist for bounded values of t2, see [13, 14].

Remark The solution of the equation for
3
u contains growing terms as t2 → ∞, see

for example [14]. These terms are secular as t2 ∼ ε−1. But we do not consider such long
times in this work.

The coefficients of the representation (5) have a singularity as S′ → 0. The order of

singularity of
j

Bk is easy calculated.

2
B= O(t−1),

4
B1= O(t−3).
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To determine the asymptotics of
3
u as t2 → −0 we construct the solution of the form

3
u= t−1

2

3
u (−1,0)(x1, t2) + ln |t2|

3
u (0,1)(x1, t2) + t2 ln |t2|

3
u (1,1)(x1, t2) +

3̂
u(x1, t2). (13)

Substitute this representation into equation (8) and collect the terms of the same order
with respect to t2. It yields equations for coefficients of the asymptotics (13)

3
u (−1,0) = i2|f |2 1

u,
3
u (0,1) = −iL(

3
u (−1,0)),

3
u (1,1) = −iL(

3
u (0,1)),

L(
3̂
u) = it2 ln |t2|L(

3
u (1,1)) + i

3
u (1,1). (14)

Here L(u) is a linear operator of the form

L(u) = i∂t2u + ∂2
x1

u + 2| 1
u |2u+

1
u 2u∗.

Functions
3
u (−1,0),

3
u (0,1) and

3
u (1,1) are determined from algebraic equations. These

functions are bounded as −const < t2 ≤ 0, const > 0.

The function
3̂
u is a solution of nonhomogeneous linearized Schrodinger equation. The

right hand side of the equation is a smooth function as −const < t2 ≤ 0, const > 0. The

solution of this equation can be obtained using results of [14]. In particularly if
1
u is N-

solitons solution of NLSE then exists the bounded solution of nonhomogeneous linearized
Schrodinger equation (14) as −const < t2 ≤ 0, const > 0.

The asymptotic form (5) allows to solve equation (1) up to the order ε6. To obtain
more accurate approximation one have to include terms without fast oscillating of the
order o(ε3) into asymptotic solution (5). Therefore we define the domain of validity of (5)
by following relation:

ε6R(t2, x1) = o(ε3), ε → 0.

Coefficients of (5) have singularity at t2 = 0. The residue part increases as t2 → 0. From
formulas (6) and (7)–(12) one can easily obtain the behaviour of the residue part:

R(t2, x1) = O(t−3
2 + ε6t−9

2 ), t2 → −0.

It yields the domain of validity of (5)

−t2 ≫ ε or − t ≫ ε−1.

3 Scattering

In the neighborhood of the point t2 = 0 the frequency of the driving force becomes
resonant. Formally it means representation (5) is not valid.

In this part of the work we construct another representation for the solution of equation
(1). This representation is valid in the neighborhood of the resonance line t2 = 0.

Ψ(x, t, ε) = ε
1
w (x1, t1)

)
+ ε2 2

w (x1, t1) +

ε3 ln ε
3,1
w (x1, t1) + ε3 3

w (x1, t1) ε → 0. (15)
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Here we use a new scaled variable t1 = t2/ε. Representation (15) is matched with (5). It
means these formulas are equivalent up to value o(ε5) as t2 → −0. The coefficients of (15)
are determined by ordinary differential equations (16), (18), (20) and matching conditions.

To obtain the behaviour of the coefficients of (15) as t1 → −∞ match (15) with (5).
Write (5) in terms of t1

Ψ(x, t, ε) = ε

(
1
u (x1, 0) −

(
t−1
1 f + it−3

1 f
)
exp(iS/ε2)

)
+

ε2

(
∂t2

1
u (x1, t2)|t2=0t1 + t−1

1 i|f |2 1
u (x1, 0) + O

(
t−2
1

))
+

ε3 ln ε

(
− iL(2i|f |2 1

u)|t2=0 + o(1)

)
+

+ε3

(
1

2
∂2

t2

1
u (x1, t2)|t2=0t

2
1 +

3̂
u(x1, 0) + o(1)

)
, 1 ≪ −t1 ≪ ε−1, ε → 0.

To obtain equations for coefficients of (15) substitute (15) into equation (1). It yields

ε2

(
(∂t1

1
w −f exp(iS/ε2)

)
+ ε3

(
∂t1

2
w +∂2

x1

1
w +γ| 1

w | 1
w

)
+

ε4

(
∂t1

3
w +∂2

x1

2
w ++

1
w 2 2

w ∗ + 2γ| 1
w | 2

w

)
= ε5ρ(t1, x1, ε).

The function ρ(t1, x1, ε) can be represented in the form

ρ(t1, x1, ε) = O(| 1
w |2 3

w +∂2
x1

3
w +ε| 2

w |3 + ε4| 3
w |3).

Collect the terms of the same order with respect to ε. As result we obtain the equations
for coefficients of (15).

i∂t1

1
w= f exp(it21/2). (16)

The matching conditions give
1
w=

1
u (x1, 0) t1 → −∞. The solution of this problem is

represented in terms of Fresnel integral

1
w=

1
u (x1, 0) − if(x1)

∫ t1

−∞

exp(iθ2/2)dθ. (17)

Equations for higher-order terms are

i∂t1

2
w= −∂2

x1

1
w +| 1

w |2 1
w, (18)

i∂t1

3,1
w= 0, (19)

i∂t1

3
w= −∂2

x1

2
w −2| 1

w |2 2
w − 1

w 2 2
w ∗. (20)

The higher-order terms satisfy fist order ordinary differential equations with respect
to t1. The spatial variable x1 is a parameter in these equations. The solutions of these
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equation are uniquely defined by terms of the order of 1 in asymptotics as t1 → −∞. The
asymptotics as t1 → −∞ is obtained by matching

2
w= ∂t2

1
u (x1, t2)|t2=0t1 + o(1);

3,1
w= −iL(2i|f |2 1

u)|t2=0 + o(1),

3
w=

1

2
∂2

t2

1
u (x1, t2)|t2=0t

2
1 +

3̂
u(x1, 0) + o(1).

To determine the behaviour of the solution after resonance we need to calculate the asymp-
totics as t1 → +∞ of the coefficients for representation (15). Calculations give

1
w (x1, t1) =

1
u (x1, 0) − if(x1)

[
ic1 +

exp(it21/2)

it1
+ O(t−3

1 )

]
,

where c1 = (1 − i)
√

π.

Denote by
1
w (x1, t1)|t1→∞ =

1
w0 (x1).

The function
2
w (x1, t1) has the asymptotics of the form

2
w (x1, t1) = t1

2
w 1(x1)+

2
w 0(x1) + g1(x1)

exp(it21/2)

it21
+ O(t−4

1 ),

where
2
w 1 = −∂2

x1

1
w0 +| 1

w0 |2 1
w;

2
w 0(x1) = lim

t1→∞

(∫ t1

−∞

[
∂2

x1

0
w (x1, θ) + | 0

w (x1, θ)|2 0
w (x1, θ)

]
dθ− 2

w1 t1

)
,

g1(x1) = k1∂x1
f + k2|f |2f , k1 and k2 are constants.

3
w (x1, t1) = t21

3
w 2(x1) + o(t21), t1 → ∞,

where
3
w 2(x1) = i

(
∂2

x1

2
w1 +2| 1

w0 |2 2
w1 +

1
w 2

0
2
w ∗

1

)
,

The domain of validity for (15) is defined by the same way as was shown in previous
section. We require the following relation is valid

ε5ρ(t1, x1, ε) = o(ε2), t1 → ∞.

The determined above behaviour of coefficients of asymptotics (15) give the domain of
validity for (15)

|t1| ≪ ε−1 or |t| ≪ ε−2.
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4 Scattered wave

In this section we construct the asymptotic solution of equation (1) after passage through
the resonance. The leading-order term of the solution satisfies NLSE and depends on x1, t2
as well as before resonance. But this leading-order term is determined by another solution
of NLSE which contains generally speaking another number of solitons.

We construct the asymptotic solution of the form

Ψ(x, t, ε) = ε
1
v (x1, t2) + ε2 2

v (x1, t2) +

ε2
2
A (t2, x1) exp(iS/ε2) + ε4(

4
A1 (t2, x1) exp(iS/ε2) +

4
A−1 (t2, x1) exp(−iS/ε2)). (21)

Substitute this representation into (1):

ε2(−S′
2
A −f) exp(iS/ε2) + ε3(∂t2

1
v +∂2

x1

1
v +| 1

v |2 1
v) +

ε4(∂t2
2
v +∂2

x1

2
v +2| 1

v |2 2
v +

1
v

2 2
v ∗ +

(−S′
4
A1 +∂t2

2
A +∂2

x1

2
A +2| 1

v |2
2
A) exp(iS/ε2) +

(S′
4
A−1 +

1
v 2

2
A

∗) exp(−iS/ε2)) = ε5r(t2, x1, ε).

Here r(t2, x1, ε) depends on coefficients of the asymptotics (21). This dependence is easy

calculated. The coefficients
2
A,

4
A1 and

4
A−1 have singularity on the resonance curve. To

determine the domain of validity of (21) we need to derive the explicit formula for r

r(t2, x1, ε) = O(1 + ε|
2
A |3 + ε ln |ε| + ε7(|

4
A1 |3 + |

4
A−1 |3)).

Collect the terms of the same order of small parameter and the same exponents. It
yields the equations for coefficients of representation (21).

∂t2

1
v +∂2

x1

1
v +| 1

v |2 1
v= 0; (22)

∂t2
2
v +∂2

x1

2
v +2| 1

v |2 2
v +

1
v 2 2

v ∗ = 0 (23)

−S′
2
A= f ;

−S′
4
A1= −∂t2

2
A −∂2

x1

2
A −2| 1

v |2
2
A;

S′
4
A−1= − 1

v 2
2
A

∗.

Initial conditions for differential equations for
1
v are obtained by matching. These

conditions are evaluated on the resonance curve t0 = 0.

1
v |t2=0 =

1
u (x1, 0) + (1 − i)

√
πf(x1); (24)

2
v |t2=0 =

2
w0 (x1). (25)
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The residue part ε5r(t2, x1, ε) = o(ε2) as t2 ≫ ε. This condition is determined the
domain of validity for (21).

Formula (24) is connection formula for the leading-order term of the asymptotic solution
before and after the resonance. Additional term (1 − i)

√
πf(x1) leads to changing of the

solution after passage through the resonance.

5 Numerical justification of asymptotic analysis

In this section we justify our asymptotic formula (4). Let us consider the pure soliton
initial condition for equation (1):

Ψ(x, t, ε)|t=t0 =
2
√

2εη exp{−i2cεx − 4(c2 − η2)t0ε
2}

cosh(2ηεx + 8cηε2t0 + s)
(26)

According of our analytical results this initial condition leads to one soliton solution as
the leading-order term of the asymptotic solution:

1
u (x1, t2) =

2
√

2η exp{−i2cx1 − 4i(c2 − η2)t2}
cosh(2ηx1 + 8cηt2 + s)

.

This soliton propagates up to the resonance curve t = 0.

To annihilate this soliton on the resonance curve one may choose the specific form of
the amplitude of the perturbation such that the left hand side of relation (4) equals zero:

0 =
1
u (x1, 0) + (1 − i)

√
πf(x1).

Hence

f(x1) =
−(1 + i)

2
√

π

1
u (x1, 0) =

−(1 + i)√
π

√
2η exp{−i2cx1}
cosh(2ηx1 + s)

To illustrate this by numerical simulations we choose ε = 0.1, η = 1, s = 0, c = 0, t0 =
−200. Then the original equation (1) has the form

i∂tΨ + ∂2
xΨ + |Ψ|2Ψ = 0.01f exp{i0.005t2}.

Initial condition is

Ψ|t=−200 =
0.2

√
2

cosh(0.2x)
,

and amplitude of the perturbation is

f =
−(1 + i)√

π

√
2

cosh(0.2x)

The numerical simulations of annihilation process for soliton of NLSE are presented on
the following figure. This justifies the formulas obtained above by matching method.
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Figure 2. Annihilation of soliton.

6 Summary

We have studied the scattering process on the resonance and obtained the way for the
control the parameters of scattered solitons. Using formula (4) one can choose the form
of the perturbation to obtain the scattered pattern of the given form. The process of
the scattering on the local resonance is an universal phenomenon for waves propagate in
dispersion media. We believe that our work can be useful for further understanding and
description of solitary waves evolution under perturbation.
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