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Abstract 

In this paper, a new approach for contingency determination in a portfolio of construction projects is proposed. The 
model proposed helps an agency find the level of confidence needed for individual projects to ensure that the portfolio 
budget will meet the minimum level of confidence based on available funding and the agency’s policy goals. The 
promise of this model is to protect a portfolio of projects against cost overrun by adjusting their original budgets. A 
Bayesian approach is employed to update the model on regular intervals. As more information becomes available in the 
future, the required adjustment in portfolio budget will be reduced, because the accuracy of estimating the contingency 
is improved. The proposed model is an effective tool for the agencies/owners to develop contingency budgets. 
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1. Introduction 

Large transportation capital projects all around the 
globe have been experiencing cost and schedule 
overruns. Nearly 50% of the large active 
transportation projects in the United States overran 
their initial budgets (Sinnette 2004). To overcome the 
cost overrun issue, identifying cost escalation factors 
have been the subject of much research (Shane et al 
2009; Flyvbjerg et al 2003; Pickrell 1990). For 
instance, Shane et al (2009) identified 14 risk factors 
classified in two categories: 1. Internal Sources such 
as bias, poor estimating, and contract document 
conflicts; 2. External Sources such as effects of 
inflation, market conditions, and unforeseen events/ 
conditions. Contingency is a reserve budget for 
coping with risks and uncertainties and to help keep 
the projects on budget. An owner agency usually 

adds contingency to the estimated project cost to 
account for the uncertainties. Risks and uncertainties 
associated with a project are impediments to reach an 
accurate cost estimate. Contingency is traditionally 
estimated as a predetermined percentage of project 
base cost depending on the project phase. In recent 
years, some agencies have started conducting formal 
probabilistic risk assessment to estimate contingency 
budget rather than deterministic approach (Touran 
2010; Molenaar 2005). However, to establish the 
contingency budget, an agency must make all effort 
to set aside a budget which is optimized. This 
becomes more important when an agency is dealing 
with a portfolio of projects. Allocation of an excess 
budget for a project will use up the money that can be 
spent on other projects. For instance the current 
practice in the U.S. to estimate the contingency 

Journal of Risk Analysis and Crisis Response, Vol. 2, No. 4 (December 2012), 223-232

Published by Atlantis Press 
      Copyright: the authors 
                   223

Administrateur
Texte tapé à la machine
Received 5 March 2012; accepted 4 August 2012



 

budget in transit projects called Top-down Model is 
based upon a probabilistic method using lognormal 
distributions for different cost categories in the 
project. Research shows the way that cost categories 
are ranged is very conservative resulting in a 
contingency budget far larger than what is indeed 
needed (Bakhshi and Touran 2009). Nevertheless, 
despite all claims regarding improved models, budget 
estimating for transit projects have been inaccurate 
for several decades (Flyvbjerg 2006). Also, for large 
capital programs consisting of several projects, 
establishing contingency has not been well studied.         

2. Proposed Model for Calculating Contingency 

This model is a continuation and major improvement 
on an earlier model developed by Touran (2010) for 
calculating contingency for a portfolio of projects. 
The new model uses a Bayesian approach for 
updating the calculations based on new data that 
becomes available. The application of the model is 
shown on a group of transit projects. Even though the 
application of this model in this paper is on transit 
projects, it is a mathematically flexible model that 
can be applied on any type of construction project.  
In the model proposed here, the portfolio consists of 
projects with different owners who have requested 
funding from the same source. For example, in the 
case of transit in the United States, these are projects 
submitted by state agencies for obtaining federal 
funding. For each of these projects, it is assumed that 
a formal risk assessment has been conducted based 
on the specific risks affecting each project as required 
by the regulations. The objective of the model 
presented here is then to adjust the overall portfolio 
budget based on the historical data on budget 
shortfalls. In other words, it is assumed that a detailed 
risk assessment has been conducted at the individual 
project level and that the requested funding reflects 
that.  

The model assumes normal distribution for the 
cost overruns/ underruns and truncated normal 
distribution for the cost of each project in the 
portfolio. These assumptions are based on the 
following factors: first, the cost overrun/underrun 
distribution will be used as a prior distribution in the 
Bayesian approach. As more information becomes 
available, the distribution becomes more refined and 
converges to the true distribution regardless of the 
initial assumption about prior, and second, the use of 

normal distribution allows the derivation of closed 
form solution for the calculation of contingency 
based on desired confidence levels. Furthermore, 
tests of goodness of fit showed that assumption of 
normality was adequate for the project cost data that 
was available. 

To form truncated normal distribution of cost for 
each project, it is assumed that the probability of 
experiencing underrun m  is α  as the discrete 
portion of distribution. The parameter m  is added 
because project owners have the tendency to spend 
most of the budget by enhancing and embellishing of 
the projects when they realize their projects will be 
completed under the budget. This parameter equips 
the model to consider the fact that the project may be 
completed under the initial budget by a certain 
percent.  m  is an arbitrary number based upon 
agency’s objectives and α  can be determined by 
reviewing the historical cost overruns/underruns. An 
agency may decide to input m  equal to zero and find 
the α  corresponding to that. Fig. 1 illustrates the 
truncated normal X~ ),( σμ ′′N , where the normal 
component of the distribution is ),( σμN . 

 

 
Fig. 1: Truncated Normal Distribution 

We presume that there is a database of 
construction projects comprising of ni ...,,1=  
projects each with the initial budget of ib . It is found 
through this historical data that there is α % chance 
to have m  percent underrun and get the project done 
with ii bmc ).1( −= . The model is constructed using 
the following parameters:  
 

=ib  Initial budget allocated for project i ; 
=ix Actual cost of project i ; 
=m  The maximum expected underrun; 
=ic  Minimum expected project i cost which is 

ibm).1( − ; 
=α  Percent of projects in the historical data having 

underrun more than or equal to m ; 
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=δ  Cost overrun/ underrun; 
=δ  Average of cost overruns/underruns in the 

historical data; 
=σ Standard deviation of cost overruns/ underruns in 

the historical data; 
=β  Average rate of cost overrun/ underrun relative 

to b which is δ+1 ; 
=ρ  Average rate of cost overrun/ underrun relative 

to c  which is )1/( m−β ; 
=iμ  Mean of underlying normal distribution in 

project i ; 
=iσ  Standard deviation of underlying normal 

distribution in project i ; 
=′iμ  Mean of hybrid normal distribution in project 

;i  
=′iσ  Standard deviation of hybrid normal 

distribution in project i ; 
=ϕ  A constant coefficient which is equal to ii c/σ ′ ; 
=*

ib Revised budget of project i ; 
=B  Sum of all individual initial budgets, ∑ ib ; 
=η Percent of confidence that individual projects’ 

cost will not be more than *b ;  
=*B Sum of all revised individual budgets based on 

η , ∑ *ib ; 

=γ Probability that portfolio of projects’ cost will 
not be more than *B ; 

Project cost iX  is defined as follows: 
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The Probability Distribution Function (PDF) of 
project cost which is a truncated normal is: 
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The mean μ′  and standard deviation σ ′  of truncated 
normal can be calculated using the following 
equations: 
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Where: 

i

iic
σ
μ

α
−

=Φ− )(1  (5) 

)(1 α−Φ  is the inverse of cumulative function for 
standard normal distribution. β  is the average rate 
of cost overruns/underruns and can be calculated 
from the historical data as: 
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Also, we know iμ′  is the expected value of the final 
cost of project i , so we can model it as a multiplier 
of its budget:  
 

iii cb .. ρβμ ==′  (7) 

and knowing that ii bmc ).1( −= , we have: 
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(8) 

By rearranging Eq. (5), mean of the underlying 
normal distribution is calculated. Also, by 
substituting Eq. (7) and (9) in Eq. (3) and rearranging, 
the standard deviation of underlying distribution is 
found: 

)(. 1 ασμ −Φ−= iii c                               (9) 
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Reviewing Eq. (4) shows that all terms of 2
iσ′ are 

comprised of a constant coefficient times 2
ic .  

Therefore, 2
iσ ′ can be written in the form of: 
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Where ϕ  is a constant coefficient for all values of 
iσ ′  and ic  that can be computed using Eqs. (4) and 

(11). Referring to Fig. 1, if a budget ii bb >*

 for each 
project is selected, the chance of shortfall of budget 
would be limited to η . So: 
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If we rearrange Eq. (12), we obtain: 
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We know that the original portfolio budget is: 
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Using Eq. (13), (14) and substituting iμ  using Eq. (9), 
the new portfolio budget can be computed as follows: 
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Substituting Eq. (10) in Eq. (15), the ratio of 
BB /* is found as follows: 
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(16) 

Eq. (16) gives the required portfolio budget increase 
with respect to η . We now assume that project costs 
are statistically independent and the total actual cost 
of all projects in the portfolio is T . The assumption 
of independence is reasonable because these projects 
are scattered throughout the country and the owners 
and management structure are different, as these are 
various state agencies using the federal funds. 
However, it should be noted that pairwise correlation 
between costs of any two concurrent projects may 
exist when there is a belief that they are using 
common resources, common management, or being 
affected by other common factors such as statutory/ 
regulatory constraints, political conditions, or 
unemployment.  
Based on Central Limit Theorem, T  will follow an 
approximate normal distribution with the mean Tμ  
and the standard deviation Tσ . Therefore: 
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Defining γ  as the percent of confidence that 
portfolio of projects cost will not be more than *B , 
we have: 
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Rearranging Eq. (20) and using Eq. (18) and (19), we 
obtain: 
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By equating Eq. (15) and (21) and substituting iσ  
from Eq. (10), γ can be found as follows: 
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Rearranging Eq. (22) gives: 
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Eqs. (16) and (23) are used to calculate the require 
percent increase in portfolio budget and probability 
of overrun for each individual project in the portfolio 
based on probability of having sufficient budget for 
the portfolio of projects. In the next section we will 
see how these values are updated when new 
completed projects become available. 

3. Fundamentals of Bayesian Approach 

An agency employing the proposed model is 
expecting to experience less or even no cost overrun 
in the newly funded projects. Since the model has 
been constructed based on limited observed data, it is 
conceivable that the overrun will not be eliminated in 
the first attempt. Therefore the model needs to be 
updated on a yearly or bi-yearly basis, depending on 
the number of completed projects. To this end, a 
Bayesian approach is utilized to update the model as 
the information regarding the costs of new projects 
become available. When the observed data are 
limited and making decision on the available 
information is required, the Bayesian approach can 
help update the system as more data is acquired. The 
fundamentals are based on Eq. (24) (Ang and Tang 
2006): 
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is the 
normalizing constant;

=)(δL the likelihood of observing the new cost 
overruns/ underruns assuming a given δ , mean of 
the distribution; =′ )(δf  prior distribution of δ ; 
and =′′ )(δf  posterior distribution of δ . 

Eq. (24) can be used to update the proposed model in 
light of new information acquired through newly 
completed projects during a certain period of time. δ  
is the average of cost overruns/underruns required to 
calculate the parameters β and ρ  of the model.  

4. Bayesian Approach for k Completed Projects 

Let’s assume that k  new projects are recently 
completed. Further, assume that these k  new 
projects with the cost overrun/underrun of jδ  are 
statistically independent of each other. The 
probability of observing kδδ ...,,1 coming from a 
population Δ  having an underlying normal 
distribution ),( σδΔN is:  
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Therefore, the likelihood function can be written as: 
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It should be noted that Eq. (27), the joint likelihood 
of the sample, is the product of k  individual 
observed normal likelihoods. It is known that the 
product of k  normal likelihoods has the shape of a 
normal distribution as follows (Bolstad 2007):  
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The posterior distribution is now the product of 
likelihood )(δL and prior )(δf ′ . If the prior is a 
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normal PDF such as ),(~)( σδδ ′′′ Nf , then the 
posterior has also a normal PDF with the mean and 
standard deviation as follows (Ang and Tang 2006): 
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By finding the updated distribution of cost overruns/ 
underruns, the main model is revised to calculate new 
required percent increase in portfolio budget BB* . 
This is done by substituting βα , , and ρ  parameters 
of the model with the following values: 
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5. Numerical Example 

5.1. Main Model 

To show the application of the model, a set of 28 
transit projects (Booz Allen Hamilton 2005) is 
selected (Table 1). These projects have been funded 
by Federal Transit Administration (FTA) of the U.S. 
Department of Transportation in the past 20 years. 
Cost overrun/underrun of each project is defined to 
be the percent of difference between actual final cost 
(as-built cost) and estimated cost at the end of final 
design (FD), when in transit projects Full Funding 
Grant Agreement (FFGA) is established by the FTA. 
Reviewing Table 1 shows that 22 out of 28 projects 
have been completed before 2004, five projects in 
2004 and one project in 2005. We set aside the 22 
projects as historical data to find the primary values 
for α and β  used in the model. Then the model is 
applied to the set of five projects completed in 2004 
to see the effect of model on cost overruns/underruns. 
The project completed in 2005 is not considered in 
the application process of the model as it would fall 
in another fiscal year. From this point on, for 
consistency and ease of referencing, we call the set of 

22 projects “Historical Dataset”, the set of five 
projects “First Dataset”. 

Table 1: Cost Overrun/underrun of 28 Transit Projects 

(Booz Allen Hamilton 2005) 

Proj. 
ID Project Name Year 

Completed

Cost at 
the FFGA 

(in M$)

Actual 
Cost    

(in M$)

Cost 
Overrun/ 
Underrun

1 Atlanta North Line Extension 1999 $381.3 $472.7 23.97%
2 Boston Old Colony Rehabilitation 1997 $551.9 $565.0 2.37%
3 Boston Silver Line (Phase 1) 2004 $413.4 $604.4 46.20%
4 Chicago Southwest Extension 1989 $350.9 $474.6 35.25%
5 Dallas South Oak Cliff Extension 2002 $517.2 $437.2 -15.47%
6 Denver Southwest Line 1999 $176.3 $177.1 0.45%
7 Los Angeles Red Line MOS 1 1991 $960.3 $1,490.1 55.17%
8 Los Angeles Red Line MOS 2 1994 $1,524.6 $1,921.6 26.04%
9 Los Angeles Red Line MOS 3 1995 $1,345.6 $1,227.6 -8.77%
10 Minneapolis Hiawatha Line 2004 $675.4 $715.3 5.91%
11 New Jersey Hudson-Bergen MOS1 2000-2002 $992.1 $1,113.0 12.19%
12 New York 63rd Street Connector 2001 $645.0 $632.3 -1.97%
13 Pasadena Gold Line 2003 $693.9 $677.6 -2.35%
14 Pittsburgh Airport Busway (Phase 1) 2000-2002 $326.8 $326.8 0.00%
15 Portland Airport MAX Extension 2001 $125.0 $127.0 1.60%
16 Portland Banfield Corridor 1984 $286.6 $246.8 -13.89%
17 Portland Interstate MAX 2004 $314.9 $349.4 10.96%
18 Portland Westside/Hillsboro MAX 1998 $910.2 $963.5 5.86%
19 Salt Lake North-South Line 1999 $312.0 $311.8 -0.06%
20 San Francisco SFO Airport Ext. 2003 $1,167.0 $1,550.2 32.84%
21 San Juan Tren Urbano 2005 $1,250.0 $2,250.0 80.00%
22 Santa Clara Capitol Line 2003 $159.8 $162.5 1.69%
23 Santa Clara Tasman East Line 2001 $275.1 $276.2 0.40%
24 Santa Clara Tasman West Line 1999 $332.5 $280.6 -15.61%
25 Santa Clara Vasona Line 2004 $313.6 $316.8 1.02%
26 Seattle Busway Tunnel 1990 $395.4 $611.1 54.55%
27 St Louis Saint Clair Corridor 2000 $339.2 $336.5 -0.80%
28 Washington Largo Extension 2004 $433.9 $456.0 5.09%  

To verify the assumption of normality, a test of 
goodness of fit using @Risk (Palisade Corp. 2008) 
software is conducted on 22 cost overruns/ underruns 
of Historical Dataset. The test using the Chi-squared 
statistic passed at 1% level of significance (P-value= 
0.0219). Fig. 2 depicts the superposition of the 
normal distribution on the original data histogram.  
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Fig. 2: Fitted Normal Distribution on Cost 

Overruns/Underruns of 22 Transit Projects 
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Fig. 2 demonstrates the limitation in the cost 
underrun values. It means that in the real world we 
are dealing with projects that their costs would not be 
less than a certain value. This certain value can be 
approximated using historical data. Reviewing the 
historical data, we assume that the FTA defines 

%15=m  as the maximum expected underrun. Using 
Fig. 2, it is found that the value of α  corresponding 
with %15=m  is %1.9=α  and the average of cost 
underruns/overruns is %79.8=δ ; 
thus 0879.1=β and 2799.1)15.01(0879.1 =−=ρ . 
After estimating values of α and β from the 
historical data, the model is ready to be applied on 
any prospective set of projects which here is the First 
Dataset. 

From Historical Dataset (Fig. 2), 
%1.9=α , 0879.1=β , and  2799.1=ρ  were 

estimated. Using Eqs. (4) and (11), 1875.0=ϕ  is 
calculated. Then by the means of Eq. (23), the 
corresponding η s for different γ s are calculated. 
This is done for γ between 5% and 95% and the 
result is depicted in Fig. 3.  
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Fig. 3: Probability of Budget Sufficiency in the Portfolio of 

Independent Projects (γ ) vs. in Individual Projects (η ) 

Then, Eq. (16) is employed to compute the required 
percent increase in portfolio budget based on the η  
values (probability that individual projects are 
sufficiently funded) found from Eq. (23). The 
required percent increase in budget is graphed versus 
γ and shown in Fig. 4. In order to make sure that the 
results are accurate, we simulated the model to find 

increasing factor which is superimposed on the 
analytical curve found using the analytical approach. 
These two curves are very similar. 
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      For example, one can see in Fig. 3 that if the FTA 
wants to have 85% confidence that allocated budget 
for the portfolio of projects will not fall short, it 
needs to consider a minimum level of confidence of 
68.78% ≅  69% in each individual project risk 
assessment. Also, Fig. 4 illustrates that the FTA 
needs to increase the portfolio budget by 16.52% in 
order to have 85% level of confidence that the budget 
for the portfolio is sufficient. This finding is 
significant because the proposed methodology 
provides a method for calculating the percent 
increase over existing portfolio budget levels to 
achieve a certain confidence level in individual 
projects.  

In Table 2, a comparison is made between the actual 
cost overrun/underrun of projects in the First Dataset 
and cost overrun/underrun if the budget had been 
adjusted with the estimated increasing factors. Even 
though the required budget increase in the portfolio 
can be distributed differently between the projects, 
we assume all will be increased proportionally by 
multiplying the required increase factor 
( =BB* 1.1652) by the cost at the FFGA to reach 
Adjusted Cost at the FFGA.  
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Table 2: Comparison of Cost Overrun/Underrun of Projects in the First Dataset Using the Proposed Model 

Cost Overrun/ 
Underrun Proj. 

ID 

Cost at the 
FFGA  
(in M$) 

Adj. Cost at 
the FFGA  

(in M$) 

Actual 
Cost  

(in M$) Actual Adjusted 

3 $413.40 $481.71 $604.40 46.20% 25.47% 

10 $675.40 $786.99 $715.30 5.91% -9.11% 

17 $314.90 $366.93 $349.40 10.96% -4.78% 

25 $313.60 $365.42 $316.80 1.02% -13.30% 

28 $433.90 $505.59 $456.00 5.09% -9.81% 

Total $2,151.20 $2,506.64 $2,441.90 13.84% -2.31% 
 

In the second column (from the left) of Table 2, the 
original costs at the FFGA of all five projects in the 
portfolio (First Dataset) are presented. As it was 
stated earlier, the proposed model considering the 
performance of past projects in the Historical Dataset 
suggests the FTA to increase the total portfolio 
budget of the First Dataset by 16.52% in order to 
have 85% confidence that the budget for the portfolio 
(First Dataset) is sufficient. Then the costs at the 
FFGA of all projects in the portfolio are adjusted by 
the increase factor of 1.1652 and are shown in the 
third column of Table 2. This column represents the 
budget of each project if the FTA had used the 
proposed model. The actual costs of projects are 
given in the fourth column of Table 2. The fifth 
column shows the actual cost overruns/ underruns 
considering the original budgets at the FFGA and the 
sixth column gives the cost overruns/ underruns if the 
FTA had used the model. Table 2 depicts that the 
model could alleviate cost overrun of some projects 
in the First Dataset. However, the promise of this 
model is to protect a portfolio of projects against cost 
overrun. The last row of Table 2 shows that if the 
FTA had used the proposed model to allocate budget 
for five new projects, they could prevent occurring 
cost overrun of 13.84% with experiencing -2.31% 
cost underrun. We expect by updating the model and 
considering the performance of the recently 
completed projects, we reach more accurate and 
optimized increasing factor for budgeting of future 
projects.  

5.2. Bayesian Updating 

In this step, we use the information collected from 
completed projects (actual costs) in the First Dataset 

to update the model. The cost overruns/ underruns of 
five projects are considered new observations and 
serve to form the underlying distribution. The prior 
distribution is the normal distribution fitted to the 
histogram of 22 cost overruns/ underruns in the 
Historical Dataset with a mean of 8.79% and standard 
deviation of 0.2053.  
      Considering 85% confidence as a reasonable 
level, we found that 16.52% increase on the total 
budget was required. By means of Bayesian updating 
and recent performance of the transit projects 
sponsored by the FTA, the α  and β of the model 
can be updated. The prior distribution comes from the 
Historical Dataset as follows:  
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Five new observations are the cost 
overruns/underruns of projects with adjusted cost at 
the FFGA using 16.52% increasing factor shown in 
Table 2. Using Eq. (28), the joint likelihood function, 
the product of five individual normal PDFs, is 
calculated as: 
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To find the posterior distribution, Eq. (30) is used:  
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Prior, likelihood, and posterior distributions of cost 
overrun/ underrun are shown in Fig. 5. 
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The posterior distribution parameters can now be 
used to update α , β  and ρ  parameters considering 

%15=m : 
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Replacing the new values of parameters ( 1newα , 1newβ  
and 1newρ ) in the model, it is ready and updated to be 
applied to any prospective dataset. One can see in Fig. 

5 that the posterior curve has become narrower and 
moved to the left compared to the prior curve. This 
means when the performance of the recently 
completed projects came into consideration, the 
average cost overruns/ underruns (δ ) from 8.79% in 
the Historical Dataset (prior) decreased to 1.13% 
underrun in the posterior curve. Moreover, as an 
advantage of Bayesian updating, when more data 
becomes available, the dispersion (standard deviation) 
of the parameter under consideration diminishes and 
that the posterior curve becomes narrower. It should 
be noted that if one integrates the newly completed 
projects into Historical Dataset and calculates the 
parameters of the model, this will give an equal 
weight to all projects. In other words, this approach 
will not distinguish between a project completed in 
1984 and a project completed in 2004. Using 
Bayesian approach, the performance of recently 
completed projects (First Dataset) will have more 
influence on updating the parameters of the model 
than projects in the Historical Dataset. In summary, 
this procedure enables the model to suggest the 
required increase in the portfolio budget of the future 
projects considering mostly the performance of the 
most recent projects used for the updating as well as 
the performance of historical projects.  

6. Conclusion 

In this paper, a model is proposed which uses a 
truncated normal distribution and utilizes historical 
data to assist the agencies to estimate the required 
confidence level for risk assessment in the project-
level in order to get a desired confidence for the 
sufficiency of portfolio budget. It also calculates the 
required increase in the portfolio budget based on the 
desired confidence level. For instance, in the given 
numerical example, 22 transit projects (Historical 
Dataset) were used to initialize the model and 
calculate the primary parameters of the model. Then 
the model was applied to five transit projects (First 
Dataset) to estimate the necessary project-level 
confidence level for risk assessment and the required 
increase in the portfolio budget while the FTA has 
85% confidence that the portfolio budget will not fall 
short. It was found that using the model, in order to 
have 85% confidence that the portfolio budget for the 
First Dataset is sufficient, each individual project in 
the portfolio should have a contingency such that 

%69=η ; moreover, the FTA needs to increase the 
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original portfolio budget by 16.52%. This model 
considers the recent performance of the newly 
completed projects and is updated as new project data 
becomes available employing a  Bayesian approach. 
The example provided here is updated with the actual 
costs of five  projects in the First Dataset.  The 
primary parameters (α , β  and ρ ) of the model are 
updated and it becomes ready to be used for any 
upcoming portfolio of projects.  This process can be  
repeated on regular intervals (e.g. every two years) so 
that the future projects can be budgeted considering 
the most  recent performance of projects.  The 
proposed model can be used by agencies such as the 
FTA which is funding a port folio of transit projects 
every year as an effective tool to develop 
contingency budget. 
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