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Abstract

The differential-geometric and topological structure of Delsarte transmutation opera-
tors their associated Gelfand-Levitan-Marchenko type equations are studied making
use of the de Rham-Hodge-Skrypnik differential complex. The relationships with spec-
tral theory and special Berezansky type congruence properties of Delsarte transmuted
operators are stated. Some applications to multi-dimensional differential operators
are done including the three-dimensional Laplace operator and the two-dimensional
classical Dirac operator and its multi-dimensional affine extension, related with self-
dual Yang-Mills equations. The soliton like solutions to the related set of nonlinear
dynamical systems are discussed.

1 The generalized de Rham-Hodge theory aspects and re-

lated Delsarte-Darboux type binary transformations

A differential-geometric analysis of Delsarte-Darboux type transformations that was done
in Part 1 for differential operator expressions acting in a functional space H = L2(T;H),
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where T = R
2 and H := L2(R

2; C2), appears to have a deep relationship with a gen-
eralized de Rham-Hodge theory [3, 4, 5, 6, 27] devised in the midst of the past century
for a set of commuting differential operators defined, in general, on a smooth compact
m-dimensional metric space M. Concerning our problem of describing the differential-
geometric and spectral structure of Delsarte-Darboux type transmutations acting in H,
we preliminarily consider some backgrounds of the generalized de Rham-Hodge theory
devised formerly by I.V. Skrypnik [3, 4, 5, 6] for studying differential complexes. Consider
a smooth metric space M being a suitably compactified form of the space R

m, m ∈ Z+.
Then one can define on MT := T×M the standard Grassmann algebra Λ(MT;H) of dif-
ferential forms on T×M and consider a generalized external anti-differentiation operator
dL : Λ(MT;H) → Λ(MT;H) acting as follows: for any β(k) ∈ Λk(MT;H), k = 0,m,

dLβ
(k) :=

2∑

j=1

dtj ∧ Lj(t;x|∂)β(k) +

m∑

i=1

dxi ∧ Ai(t;x; ∂)β(k) ∈ Λk+1(MT;H), (1.1)

where Ai ∈ C2(T;L(H)), i = 1,m, are some differential operator mappings and

Lj(t;x|∂) := ∂/∂tj − Lj(t;x|∂) (1.2)

j = 1, 2, are suitably defined linear differential operators in H, commuting with each other,
that is

[L1,L2] = 0, [Ak,Ai] = 0 and [Lj ,Ai] = 0 (1.3)

for all j = 1, 2 and i, k = 1,m. We will put, in general, that differential expressions

Lj(t;x|∂) :=

nj(L)∑

|α|=0

a(j)
α (t;x)

∂|α|

∂xα
, (1.4)

with coefficients a
(j)
α ∈ C1(T;C∞(M ;EndCN )), |α| = 0, nj(L) nα

j ∈ Z+, j = 0, 1, are some
closed normal densely defined operators in the Hilbert space H for any t ∈ T. It is easy
to observe that the anti-differentiation dL defined by (1.1) is a generalization of the usual
interior anti-differentiation

d =

m∑

j=1

dxj ∧
∂

∂xj
+

2∑

s=1

dts ∧
∂

∂ts
(1.5)

for which, evidently, commutation conditions

[
∂

∂xj
,
∂

∂xk
] = 0, [

∂

∂ts
,
∂

∂tl
] = 0, [

∂

∂xj
,
∂

∂ts
] = 0 (1.6)

hold for all j, k = 1,m and s, l = 1, 2. Substituting within (1.5) ∂/∂xj −→ Aj , ∂/∂ts −→
Ls, j = 1,m, s = 1, 2, one gets the anti-differentiation

dA :=
m∑

j=1

dxj ∧ Aj(t;x|∂) +
2∑

j=1

dts ∧ Ls(t;x|∂), (1.7)
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where the differential expressions Aj ,LS : H −→ H for all j, k = 1,m and s, l = 1, 2, satisfy
the commutation conditions [Aj ,Ak] = 0, [Ls,Ls] = 0, [Aj ,Ls] = 0, then operation (1.7)
defines on Λ(MT;H) an anti-differential dA with respect to which the co-chain complex.

H −→ Λ0(MT;H)
dA−→ Λ1(MT;H)

dA−→ ...
dA−→ Λm+2(MT;H)

dA−→ 0 (1.8)

is evidently closed, that is dAdA ≡ 0. As the anti-differential (1.1) is a particular case of
(1.7), we obtain that the co-chain complex (1.8) corresponding to it is closed too.

Below we will follow ideas formerly developed in [3, 4, 5, 6, 30]. A differential form
β ∈ Λ(MT;H) will be called dA-closed if dAβ = 0 and a form γ ∈ Λ(MT;H) will be called
exact or dA-cohomologous to zero if there exists on MT such a form ω ∈ Λ(MT;H) that
γ = dAω.

Consider now the standard [29, 30, 8, 32] algebraic Hodge star-operation

∗ : Λk(MT;H) −→ Λm+2−k(MT;H), (1.9)

k = 0,m+ 2, as follows: if β ∈ Λk(MT;H), then the form ∗β ∈ Λm+2−k(MT;H) is such
that:

• (m− k+ 2) - dimensional volume | ∗ β| of the form ∗β equals k-dimensional volume
|β| of the form β;

• the (m+ 2) -dimensional measure β̄⊺ ∧ ∗β > 0 under the fixed orientation on MT.

Define also on the space Λ(MT;H) the following natural scalar product: for any β, γ ∈
Λk(MT;H), k = 0,m,

(β, γ) :=

∫

MT

β̄⊺ ∗ γ. (1.10)

Subject to the scalar product (1.10) one can naturally construct the corresponding Hilbert
space

HΛ(MT) :=
m+2
⊕

k=0
Hk

Λ(MT) (1.11)

well suitable for our further consideration. Notice also here, that the Hodge star ∗-
operation satisfies the following easily checkable property: for any β, γ ∈ Hk

Λ(MT), k =
0,m,

(β, γ) = (∗β, ∗γ), (1.12)

that is the Hodge operation ∗ : HΛ(MT) → HΛ(MT) is unitary and its standard adjoint
with respect to the scalar product (1.10) operation satisfies the condition (∗)′ = (∗)−1.

Denote by d
′

L the formally adjoint expression to the weak differential operation (1.1).
By means of the operations d′L and dL in the HΛ(MT) one can naturally define [8, 29, 30,
3, 32] the generalized Laplace-Hodge operator ∆L : HΛ(MT) −→ HΛ(MT) as

∆L = d′LdL + d′LdL . (1.13)
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Take a form β ∈ HΛ(MT) satisfying the equality

∆Lβ = 0. (1.14)

Such a form is called [3, 30, 32, 8] harmonic. One can also verify that a harmonic form
β ∈ HΛ(MT) satisfies simultaneously the following two adjoint conditions:

d′Lβ = 0, dLβ = 0 (1.15)

follows readily from (1.13) and (1.14).

It is easy to check that the following differential operators in HΛ(MT)

d∗L := ∗d′L(∗)−1 (1.16)

defines also a new external anti-differential operation in HΛ(MT).

Lemma 1.1. The corresponding dual to (1.8) co-chain complex

H −→ Λ0(MT;H)
d∗L−→ Λ1(MT;H)

d∗L−→ ...
d∗L−→ Λm+2(MT;H)

d∗L−→ 0 (1.17)

is exact.

Proof. A proof follows owing to the property d∗Ld
∗
L = 0 holding due to the definition

(1.16).
�

Denote further by Hk
Λ(L)(MT), k = 0,m+ 2, the cohomology groups of dL-closed and by

Hk
Λ(L∗)(MT), k = 0,m+ 2, k = 0,m+ 2, the cohomology groups of d∗L-closed differential

forms, respectively, and by Hk
Λ(L∗L)(MT), k = 0,m+ 2, the abelian groups of harmonic

differential forms from the Hilbert sub-spaces Hk
Λ(MT), k = 0,m+ 2. Before formulating

the next results, define the standard Hilbert-Schmidt rigged chain [12, 13] of positive and
negative Hilbert spaces of differential forms

Hk
Λ,+(MT) ⊂ Hk

Λ(MT) ⊂ Hk
Λ,−(MT), (1.18)

the corresponding hereditary rigged chains of harmonic forms:

Hk
Λ(L∗L),+(MT) ⊂ Hk

Λ(L∗L)(MT) ⊂ Hk
Λ(L∗L),−(MT) (1.19)

and chains of cohomology groups:

Hk
Λ(L),+(MT) ⊂ Hk

Λ(L)(MT) ⊂ Hk
Λ(L),−(MT), (1.20)

Hk
Λ(L∗),+(MT) ⊂ Hk

Λ(L∗)(MT) ⊂ Hk
Λ(L∗),−(MT)

for all k = 0,m+ 2. Assume also that the generalized Laplace-Hodge operator (1.13) is
reduced upon the space H0

Λ(M). Now by reasoning similar to that in [8, 30, 32] one can
formulate a little generalized [4, 5, 6, 30] de Rham-Hodge theorem.
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Theorem 1.2. The groups of harmonic forms Hk
Λ,−(MT), k = 0,m+ 2, are, respectively,

isomorphic to the cohomology groups (Hk(MT; C))|Σ|, k = 0,m+ 2, where Hk(MT; C) is
the k-th cohomology group of the manifold MT with complex coefficients, a set Σ ⊂ C

p, p ∈
Z+, is the set of suitable ”spectral” parameters marking the linear space of independent d∗L-
closed 0-form from H0

Λ(L),−(MT) and, moreover, the following direct sum decompositions

Hk
Λ,−(MT) = Hk

Λ(L∗L),−(MT) ⊕ ∆LH
k
Λ,−(MT) (1.21)

= Hk
Λ(L∗L),−(MT) ⊕ dLH

k−1
Λ,−(MT) ⊕ d′LH

k+1
Λ,−(MT)

hold for any k = 0,m+ 2.

Another variant of the statement similar to that above was formerly formulated in [3, 4]
and reads as the following generalized de Rham-Hodge theorem.

Theorem 1.3. The generalized cohomology groups Hk
Λ(L),−(MT), k = 0,m+ 2, are iso-

morphic, respectively, to the cohomology groups (Hk(MT; C))|Σ|, k = 0,m+ 2.

Proof. A proof of this theorem is based on some special sequence [3, 4, 5, 6, 7] of differ-
ential Lagrange type identities. �

Define the following closed subspace

H∗
0 := {ϕ(0)(η) ∈ H0

Λ(L∗),−(MT) : d∗Lϕ
(0)(η) = 0, ϕ(0)(η)|Γ, η ∈ Σ} (1.22)

for some smooth (m+1)-dimensional hypersurface Γ ⊂MT and Σ ⊂ (σ(L)∩ σ̄(L))×Σσ ⊂
C

p, where H0
Λ(L∗),−(MT) is, as above, a suitable Hilbert-Schmidt rigged[12, 13] zero-order

cohomology group Hilbert space from the co-chain given by (1.20), σ(L) and σ(L∗) are,
respectively, mutual generalized spectra of the sets of differential operators L and L∗ in
H at t = 0 ∈ T. Thereby, the dimension dimH∗

0 = card Σ := |Σ| is assumed to be known.
The next lemma, being first stated by I.V. Skrypnik [3, 4], is essential for a proof of
Theorem 1.3.

Lemma 1.4. There exists a set of differential (k + 1)-forms Z(k+1)[ϕ(0)(η), dLψ
(k)] ∈

Λk+1(MT; C), k = 0,m+ 2, and a set of k-forms Z(k)[ϕ(0)(η), ψ(k)] ∈ Λk(MT; C), k =
0,m+ 2, parametrized by the set Σ ∋ η, being semilinear in (ϕ(0)(η), ψ(k)) ∈ H∗

0 ×
Hk

Λ,−(MT), such that

Z(k+1)[ϕ(0)(η), dLψ
(k)] = dZk[φ(0)(η ), ψ(k)] (1.23)

for all k = 0,m+ 2 and η ∈ Σ.

Proof. A proof is based on the following Lagrange type identity generalizing that of Part
1 and holding for any pair (ϕ0(η), ψ(k)) ∈ H∗

0 ×Hk
Λ,−(MT):

0 =< d∗Lφ
(0)(η), ∗(ψ(k) ∧ γ) >= (1.24)

= < ∗d′L(∗)−1ϕ(0)(η), ∗(ψ(k) ∧ γ) >=

= < ∗d′L(∗)−1φ(0)(x), ψ(k) ∧ γ) >=

= < (∗)−1ϕ(0)(η), dLψ
(k) ∧ γ > +Z(k+1)[ψ(0)(η), dLψ(k)] ∧ γ >=

= < (∗)−1ϕ
(0)(η), dLψ

(k) ∧ γ > +dZ(k)[ϕ(0)(η), ψ(k)] ∧ γ,



386 J Golenia, A K Prykarpatsky and Y A Prykarpatsky

where Z(k+1)[ϕ(0)(η), dLψ
(k)] ∈ Λk+1(MT; C), k = 0,m+ 2, and Z(k)[ϕ(0)(η), ψ(k)] ∈

Λk(MT; C), k = 0,m+ 2, are some semilinear differential forms on MT parametrized
by a parameter λ ∈ Σ, and γ ∈ Λm+1−k(MT; C) is arbitrary constant (m + 1 − k)-form.
Thereby, the semilinear differential (k + 1)-forms Z(k+1)[ϕ(0)(η), dLψ

(k)] ∈ Λk+1(MT; C)
and k-forms Z(k)[ϕ(0)(η), ψ(k)] ∈ Λk(MT; C), k = 0,m+ 2, λ ∈ Σ, constructed above
exactly constitute those searched for in the Lemma. �

Based now on Lemma 1.4 one can construct the cohomology group isomorphism claimed
in Theorem 1.3 formulated above. Namely, following [3, 4], let us take some singular
simplicial [29, 30, 31, 32] complex K(MT) of the compact metric space MT and introduce

a set of linear mappings B
(k)
λ : Hk

Λ,+(MT) −→ Ck(MT; C), k = 0,m+ 2, λ ∈ Σ, where

Ck(MT; C), k = 0,m+ 2, are free abelian groups over the field C generated, respectively,
by all k-chains of singular simplexes S(k) ∈ K(MT), k = 0,m+ 2, from the simplicial
complex K(MT), as follows:

B
(k)
λ (ψ(k)) :=

∑

S(k)∈Ck(MT;C))

S(k)

∫

S(k)

Z(k)[ϕ(0)(λ), ψ(k)] (1.25)

with ψ(k) ∈ Hk
Λ,−(MT), k = 0,m+ 2. The following theorem [3, 4] based on mappings

(1.25) holds.

Theorem 1.5. The set of operators (1.25) parametrized by λ ∈ Σ realizes the cohomology
group isomorphism formulated in Theorem 1.3

Proof. A proof of this theorem is obtained by passing over in (1.25 ) to the corresponding
cohomology Hk

Λ(L),+(MT) and homology Hk(MT; C) groups of MT for every k = 0,m+ 2.

If one takes an element ψ(k) := ψ(k)(µ) ∈ Hk
Λ(L),−(MT), k = 0,m+ 2, solving the equation

dLψ
(k)(µ) = 0 with µ ∈ Σk being some set of the related ”spectral” parameters marking

elements of the subspace Hk
Λ(L),−(MT), then one finds easily from (1.25) and identity (1.23)

that dZ(k)[ϕ(0)(λ), ψ(k)(µ)] = 0 for all (λ, µ) ∈ Σ × Σk, k = 0,m+ 2. This, in particular,
means due to the Poincaré lemma [28, 29, 30] that there exist differential (k − 1)-forms
Ω(k−1)[ϕ(0)(λ), ψ(k)(µ] ∈ Λk−1(M ; C), k = 0,m+ 2, such that

Z(k)[ϕ(0)(λ), ψ(k)(µ)] = dΩ(k−1)[ϕ(0)(λ), ψ(k)(µ)] (1.26)

for all pairs (ϕ(0)(λ), ψ(k)(µ)) ∈ H∗
0 × Hk

Λ(L),−(MT) parametrized by (λ, µ) ∈ Σ × Σk,

k = 0,m+ 2. As a result of passing on the right hand-side of (1.25) to the homology
groups Hk(MT; C), k = 0,m+ 2, one gets due to the standard Stokes theorem [28, 30, 29]
that the mappings

B̂
(k)
λ : Hk

Λ(L),−(MT) −→ Hk(MT; C) (1.27)

are isomorphisms for every k = 0,m+ 2 and λ ∈ Σ. Making further use of the Poincaré
duality [8, 29, 30] between the homology groups Hk(MT; C), k = 0,m+ 2, and the co-
homology groups Hk(M ; C), k = 0,m+ 2, respectively, one obtains finally the statement
claimed in Theorem 1.4.

�
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2 The spectral structure of Delsarte-Darboux type trans-

mutation operators in multidimension

Take now into account that our differential operators Lj : H → H, j = 1, 2, are of
the special form (1.2). Assume also that differential expressions (1.4) are normal closed
operators defined on dense subspace D(L) ⊂ L2(M ; CN ).

Then due to Theorem 1.3 one can find such a pair (ϕ(0)(λ), ψ(0)(µ)dx) ∈ H∗
0×Hm

Λ(L),−(MT)

parametrized by elements (λ, µ) ∈ Σ × Σ, for which the equality

B
(m)
λ (ψ(0)(µ)dx) = S

(m)
(t;x)

∫

∂S
(m)
(t;x)

Ω(m−1)[ϕ(0)(λ), ψ(0)(µ)dx] (2.1)

holds, where S
(m)
(t;x) ∈ Hm(MT; C) is some arbitrary but fixed element parametrized by a

running point (t;x) ∈MT ∩ ∂S
(m)
(t;x). Consider the next integral expressions

Ω(t;x)(λ, µ) :=

∫

σ
(m−1)
(t;x)

Ω(m−1)[ϕ(0)(λ), ψ(0)(µ)dx], (2.2)

Ω(t0;x0)(λ, µ) :=

∫

σ
(m−1)
(t0;x0)

Ω(m−1)[φ(0)(λ), psi(0)(µ)dx],

with a point (t0;x0) ∈MT∩∂S
(m)
(t0;x0)

being taken fixed on the boundaries σ
(m−1)
(t;x) := ∂S

(m)
t;x ,

σ
(m−1)
(t0;x0)

:= ∂S
(m)
t0;x0

assumed to be homological to each other as (t;x0) −→ (t;x) ∈ MT,

(λ, µ) ∈ Σ×Σ, and interpret them as the kernels [12, 13, 33] of the corresponding invertible

integral operators of Hilbert-Schmidt type Ω(t;x),Ω(t0;x0) : L
(ρ)
2 (Σ; C) −→ L

(ρ)
2 (Σ; C), where

ρ is some finite Borel measure on the parameters set Σ. Define now the invertible operators
expressions

Ω± : ψ(0)(µ) −→ ψ̃(0)(µ) (2.3)

for ψ(0)(µ)dx ∈ Hm
Λ(L),−(MT) and some ψ̃(0)(µ)dx ∈ Hm

Λ(L̃),−
(MT), µ ∈ Σ, where, by

definition, for any η ∈ Σ

ψ̃(0)(η) : = ψ(0)(η) · Ω−1
(t;x) · Ω(t0;x0) (2.4)

=

∫

Σ
dρ(µ)

∫

Σ
dρ(ξ)ψ(0)(µ)Ω−1

(t;x)(µ, ξ)Ω(t0;x0)(ξ, η),

being motivated by the expression (2.1). Namely, consider the following diagram

Hm
Λ(L),−(MT)

Ω±
−→ Hm

Λ(L̃),−
(MT),

B̂
(m)
λ ↓ ւ

˜̂
B

(m)

λ

Hm(MT; C)

(2.5)

which is assumed to be commutative for another co-chain complex

H −→ Λ0(MT;H)
dL̃−→ Λ1(MT;H)

dL̃−→ ...
dL̃−→ Λm+2(MT;H)

dL̃−→ 0. (2.6)
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Here, by definition, the generalized anti-differentiation is

dL̃ :=

2∑

j=1

dtj ∧ L̃j(t;x|∂) +

m∑

i=1

dxi ∧ c̃iI (2.7)

with c̃i ∈ C, i = 1,m, and

L̃j = ∂/∂tj − L̃j(t;x|∂), (2.8)

L̃j(t;x|∂) :=

nj(L̃)∑

|α|=0

ã(j)
α (t;x)

∂|α|

∂xα
,

where coefficients ã
(j)
α ∈ C1(T;C∞(M ; EndC

N ), |α| = 0, nj(L̃), nj(L̃) := nj(L) ∈ Z+,

j = 1, 2. Assume that the corresponding mappings B̃
(m)
λ : Hm

Λ(L̃),−
(MT) −→ Cm(MT; C),

λ ∈ Σ, act on some ψ̃(0)(µ)dx ∈ Hm
Λ(L̃),−

(MT) as follows:

B̃
(m)
λ (ψ̃(0)(µ)dx) = S

(m)
(t;x)

∫

∂S
(m)
(t;x)

Ω̃(m−1)[ϕ̃(0)(λ), ψ̃(0)(µ)dx], (2.9)

where ϕ̃(0)(λ) ∈ H̃∗
0 ⊂ H0

Λ(L∗),−(MT), λ ∈ (σ(L̃) ∩ σ̄(L̃∗)) × Σσ, and

H̃∗
0 := {ϕ̃(0)(λ) ∈ Hm

Λ(L∗),−(MT) : d∗
L̃
ϕ̃(0)(x) = 0, ϕ̃(0)(λ)|Γ̃ = 0, λ ∈ Σ} (2.10)

for some hypersurface Γ̃ ⊂ MT. Respectively, one defines the following closed subspace

H̃0 := {ψ̃(0)(µ) ∈ H0
Λ(L∗),−(MT) : d∗

L̃
ψ̃(0)(λ) = 0, ψ̃(0)(µ)|Γ̃ = 0, µ ∈ Σ} (2.11)

for the hyperspace Γ̃ ⊂ MT, introduced above.
Suppose now that the elements (2.4) belong to the closed subspace (2.11), that is

dL̃ψ̃
(0)(µ) = 0 (2.12)

Define similarly to (2.11) a closed subspace H̃∗
0 ⊂ Hm

Λ(L̃∗),−
(MT) as follows:

H0 := {ψ(0)(λ) ∈ H0
Λ(L∗),−(MT) : dLψ

(0)(λ) = 0, ψ(0)(λ)|Γ = 0, λ ∈ Σ} (2.13)

for all µ ∈ Σ. Then due to the commutativity of the diagram (2.5) there exist the corre-
sponding two invertible mappings

Ω± : H0 → H̃0, (2.14)

depending on ways in which they are extended the whole Hilbert space Hm
Λ,−(MT). Ex-

tend now operators (2.14) upon the whole Hilbert space Hm
Λ,−(MT) by means of the

standard method [21, 23] of variation of constants, taking into account that for kernels
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Ω(t;x)(λ, µ),Ω(t0;x0)(λ, µ) ∈ L
(p)
2 (Σ; C) ⊗ L

(p)
2 (Σ; C), λ, µ ∈ Σ, one can write down the

following relationships:

Ω(t;x)(λ, µ) − Ω(t0;x0)(λ, µ) = (2.15)

=

∫

∂S
(m)
(t;x)

Ω(m−1)[ϕ(0)(x), ψ(0)(µ)dx] −

∫

∂S
(m)
(t0;x0)

Ω(m−1)[ϕ(0)(λ), ψ(0)(µ)dx]

=

∫

S
(m)
± (σ

(m−1)
(t;x)

,σ
(m−1)
(t0;x0)

)
dΩ(m−1)[ϕ(0)(λ), ψ(0)(µ)dx]

=

∫

S
(m)
± (σ

(m−1)
(t;x)

,σ
(m−1)
(t0;x0)

)
Z(m)[ϕ(0)(λ), ψ(0)(µ)dx],

where, by definition, m-dimensional open surfaces S
(m)
± (σ

(m−1)
(t;x) , σ

(m−1)
(t0;x0)

) ⊂MT are spanned

smoothly without self-intersection between two homological cycles σ
(m−1)
(t;x) = ∂S

(m)
(t;x) and

σ
(m−1)
(t0;x0)

= ∂S
(m)
(t0;x0)

∈ Cm−1(MT; C) in such a way that the boundary ∂(S
(m)
+ (σ

(m−1)
(t0;x0)

, σ
(m−1)
(t0;x0)

)∪

S
(m)
− (σ

(m−1)
(t;x) , σ

(m−1)
(t0;x0)

)) = ⊘. Making use of the relationship (2.15), one can thereby find
easily the following integral operator expressions in H−:

Ω± = 1−

∫

Σ
dρ(η)ψ̃(0)(ξ)Ω−1

(t0;x0)
(ξ, η) (2.16)

×

∫

S
(m)
± (σ

(m−1)
(t;x)

,σ
(m−1)
(t0;x0)

)
Z(m)[ϕ(0)(η), (·)dx]

defined for fixed pairs (ϕ(0)(ξ), ψ(0)(η)) ∈ H∗
0 × H0 and (ϕ̃(0)(ξ), ψ̃(0)(µ)) ∈ H̃∗

0 × H̃0,
λ, µ ∈ Σ, being bounded invertible operators of Volterra type [18, 19, 14, 33] on the whole
Hilbert space H. Moreover, for the differential operators L̃j : H −→ H, j = 1, 2, one can
get easily the following expressions

L̃j = Ω±LjΩ
−1
± , (2.17)

where the left hand-side of (2.17) does not depend on signs ”±” of the right-hand sides.
Thereby, the Volterra integral operators (2.16) are the Delsarte-Darboux transmutation
operators, mapping a given set L of differential operators into a new set L̃ of differential
operators transformed via the Delsarte expressions (2.17).

Suppose now that all of differential operators Lj(t;x|∂), j = 1, 2, considered above do
not depend one the variable t ∈ T. Then, evidently, one can take

H0 := {ψ
(0)
µ (ξ) ∈ L2.−(M ; CN ) : Ljψ

(0)
µ (ξ) = µjψ

(0)
µ (ξ),

j = 1, 2, ψ(0)
µ (ξ)|Γ̃ = 0, µ = (µ1, µ2) ∈ σ(L̃) ∩ σ(L∗), ξ ∈ Σσ}

H̃0 := {ψ̃
(0)
µ (ξ) ∈ L2.−(M ; CN ) : L̃jψ̃

(0)
µ (ξ) = µjψ̃

(0)
µ (ξ),

j = 1, 2, ψ̃(0)
µ (ξ)|Γ̃ = 0, µ = (µ1, µ2) ∈ σ(L̃) ∩ σ(L∗), ξ ∈ Σσ}

H∗
0 := {ϕ

(0)
λ (η) ∈ L2.−(M ; CN ) : L∗

jϕ
(0)
λ (η) = λ̄jϕ

(0)
λ (η), j = 1, 2, (2.18)

ϕ
(0)
λ (η)|Γ̃ = 0, λ = (λ1, λ2) ∈ σ(L̃) ∩ σ(L∗), η ∈ Σσ}

H̃∗
0 := {ϕ̃

(0)
λ (η) ∈ L2.−(M ; CN ) : L̃∗

j ϕ̃
(0)
λ (η) = λ̄jϕ

(0)
λ (η),

j = 1, 2, ϕ̃
(0)
λ (η)|Γ̃ = 0, λ = (λ1, λ2) ∈ σ(L̃) ∩ σ(L∗), η ∈ Σσ}
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and construct the corresponding Delsarte-Darboux transmutation operators

Ω± = 1 −

∫

σ(L̃)∩σ(L∗)
dρσ(λ)

∫

Σσ×Σσ

dρΣσ(ξ)dρΣσ (η) (2.19)

×

∫

S
(m)
± σ

(m−1)
(t0;x0)

,σ
(m−1)
(t0;x0)

dxψ̃
(0)
λ (ξ)Ω−1

x0
(λ; ξ; η)ϕ̄

(0),⊺
λ (η)(·)

acting already in the suitably rigged Hilbert space L2,−(M ; CN ), where for any (λ; ξ, η) ∈
(σ(L̃) ∩ σ(L∗) × Σ2

σ kernels

Ω(x0)(λ; ξ, η) :=

∫

σ
(m−1)
x0

Ω(m−1)[ϕ
(0)
λ (ξ), ψ

(0)
λ (η)dx] (2.20)

for (ξ, η) ∈ Σ2
σ and every λ ∈ σ(L̃) ∩σ(L∗) belong to L

(ρ)
2 (Σσ; C)⊗L

(ρ)
2 (Σσ; C). Moreover,

as ∂Ω±/∂tj = 0, j = 1, 2, one gets easily the set of differential expressions

L̃j(x|∂) := Ω±Lj(x|∂)Ω−1
± (2.21)

j = 1, 2, also commuting, evidently, with each other.
The Volterra operators (2.19) possess some additional properties. Namely, define the

following Fredholm type integral operator in H :

Ω := Ω
−1
+ Ω−, (2.22)

which can be written in the form

Ω=1+Φ(Ω), (2.23)

where the operator Φ(Ω) ∈ B∞(H) is compact. Moreover, due to the relationships (2.21)
one gets easily that the following commutator conditions

[Ω, Lj ] = 0 (2.24)

hold for j = 1, 2.
Denote now by Φ̂(Ω) ∈ H− ⊗H− and K̂+(Ω), K̂−(Ω) ∈ H− ⊗H− the kernels corre-

sponding [12, 13] to operators Φ(Ω) ∈ B∞(H) and Ω± − 1 ∈ B∞(H). Then due to the

fact that suppK+(Ω) ∩suppK−(Ω) = σ
(m−1)
x ∪ σ

(m−1)
x0 , one gets from (2.22) and (2.23)

the well known Gelfand-Levitan-Marchenko linear integral equation

K̂+(Ω) + Φ̂(Ω) + K̂+(Ω) · Φ̂(Ω) = K̂−(Ω), (2.25)

which enables one to factor the Fredholm operator (2.22) kernel K̂+(Ω)(x; y) ∈ H− ⊗H−

for all y ∈ suppK+(Ω). The conditions (2.24) can be rewritten suitably as follows:

(Lj,ext ⊗ 1)Φ̂(Ω) = (1 ⊗ L∗
j,ext)Φ̂(Ω) (2.26)

for j = 1, 2, where Lj,ext ∈ L(H−), j = 1, 2, and their adjoints L∗
j,ext ∈ L(H−), j = 1, 2,

are the corresponding extensions [12, 24, 13] of the differential operators Lj and L∗
j ∈ L(H),

j = 1, 2.
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Concerning the relationships (2.21) one can write down [12, 24] kernel conditions similar
to (2.26):

(L̃j,ext ⊗ 1)K̂±(Ω) = (1 ⊗ L∗
j,ext)K̂±(Ω), (2.27)

where as above, L̃j,ext ∈ L(H−), j = 1, 2, are the corresponding rigging extensions of the
differential operators L̃j ∈ L(H), j = 1, 2.

Proceed now to analyzing the question about the general differential and spectral struc-
ture of the transformed operator expression (2.17). It is evident that the found above
conditions (2.25) and (2.26) on the kernels K̂±(Ω) ∈ H− ⊗ H− of Delsarte- Darboux
transmutation operators are necessary for the operator expressions (2.17) to exist and be
differential. It is natural to ask whether these conditions are also sufficient?

For studying this question let us consider Volterra operators (2.16) and (2.19) with ker-
nels satisfying the conditions (2.25) and (2.26), assuming that suitable oriented piecewise

smooth surfaces S
(m)
± (σ(t;x)(m−1) , σ(t0;x0)(m−1)) ∈ Cm(MT; C) can be given as follows:

S
(m)
+ (σ(t;x)(m−1) , σ(t0;x0)(m−1)) = {(t′;x′) ∈MT :

t′ = P (t;x|x′), t ∈ T},

S
(m)
− (σ(t;x)(m−1) , σ(t0;x0)(m−1)) = {(t′;x′) ∈MT :

t′ = P (t;x|x′) ∈ T\[t0, t]}, (2.28)

where a mapping P ∈ C∞(MT ×M ; T) is smooth and such that the boundaries

∂S
(m)
± (σ

(m−1)
(t;x) , σ

(m−1)
(t0;x0)

) = ±(σ
(m−1)
(t;x) −σ

(m−1)
(t0;x0)

) with cycles σ
(m−1)
(t;x) and σ

(m−1)
(t0;x0)

∈ K(MT) are

homological to each other for any choice of points (t0;x0) and (t;x) ∈MT. Then one can
see by means of some simple but cumbersome calculations, based on considerations from
[35] and [9], that the resulting expressions on the right hand-sides of

L̃ = L + [K±(Ω),L] · Ω−1
± (2.29)

are exactly equal to each other and differential if there is such an expression for an operator
L ∈ L(H).

Concerning the inverse operators Ω
−1
± ∈ B(H) present in (2.29) one can notice here

that due to the functional symmetry between closed subspaces H0 and H̃0 ⊂ H̃−, the
defining relationships (2.14) and (2.4) are reversible, that is there exist the inverse operator
mappings Ω

−1
± : H̃0 → H0, such that

Ω
−1
± : ψ̃(0)(λ) −→ ψ(0)(λ) := ψ̃(0)(λ) · Ω̃−1

(t;x)Ω̃(t;x) (2.30)

for some suitable kernels Ω̃(t;x)(λ, µ) and Ω̃(t0;x0)(λ, µ) ∈ L
(ρ)
2 (Σ; C) ⊗ L

(ρ)
2 (Σ; C), related

naturally with the transformed differential expression L̃ ∈ L(H). Thereby, due to the
expressions (2.30) one can write down similar to (2.19) the following inverse integral op-
erators:

Ω
−1
± = 1−

∫

Σ
dρ(ξ)

∫

Σ
dρ(η)ψ(0)(ξ)Ω̃−1

t0;x0
(ξ, η) (2.31)

×

∫

S
(m)
± (σ

(m−1)
(t;x)

,σ
(m−1)
(t0;x0)

)
Z̃(m)[ϕ̃(0)(η), (·)dx]
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defined for fixed pairs (ϕ̃(0)(ξ), ψ̃(0)(η)) ∈ H̃∗
0 × H̃0 and (ϕ(0)(ξ), ψ(0)(η)) ∈ H∗

0 × H0,
ξ, η ∈ Σ, and being bounded invertible operators of Volterra type in the whole Hilbert
space H. In particular, the compatibility conditions Ω±Ω

−1
± = 1 = Ω

−1
± Ω± must be

fulfilled identically in H, involving some restrictions identifying measures ρ and Σ and
possible asymptotic conditions of coefficient functions of the differential expression L ∈ L.
Such kinds of restrictions were already mentioned before in [37, 38, 39], where in particular
the relationships with the local and nonlocal Riemann problems were discussed.

Within the framework of the general construction presented above one can give a natu-
ral interpretation of so called Bäcklund transformations for coefficient functions of a given
differential operator expression L ∈ L(H). Namely, following the symbolic considerations
in [41], we reinterpret the approach devised there for constructing the Bäcklund trans-
formations making use of the techniques based on the theory of Delsarte transmutation
operators. Let us define two different Delsarte-Darboux transformed differential operator
expressions

L1 = Ω1,±LΩ
−1
1,±, L2 = Ω2,±LΩ

−1
2,±, (2.32)

where Ω1,+,Ω2,− ∈ B(H) are some Delsarte transmutation Volterra operators in H with
Borel spectral measures ρ1 and ρ2 on Σ, such that the following conditions

Ω
−1
1,+Ω1,− = Ω = Ω

−1
2,+Ω2,− (2.33)

hold. Making use now of the conditions (2.32) and relationships (2.33) one finds easily
that the operator B := Ω2,−Ω

−1
1,+ ∈ B(H) satisfies the following operator equations:

L2B = BL1, Ω2,±B = BΩ1,±, (2.34)

which motivate the next definition.

Definition 1. An invertible symbolic mapping B : L(H) −→ L (H) will be called a
Darboux-Bäcklund transformation of an operator L1 ∈ L(H) into the operator L2 ∈ L(H)
if there holds the condition

[QB,L1] = 0 (2.35)

for some linear differential expression Q ∈ L(H).

The condition (2.35) can be realized as follows. Take any differential expression q ∈ L()
satisfying the symbolic equation

[qB,L] = 0. (2.36)

Then, making use of the transformations like (2.32), from (2.33) one finds that

[QB,L1] = 0, (2.37)

where owing to (2.34)

QB := Ω1,+qBΩ
−1
1,+ = Ω1,+qΩ−1

2,+B. (2.38)
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Therefore, the expression Q = Ω1,+qΩ
−1
2,+ appears also to be differential owing to the

conditions (2.34).
The consideration above related with the symbolic mapping B :L(H) → L(H) gives

rise to an effective tool of constructing self-Bäcklund transformations for coefficients of
differential operator expressions L1,L2 ∈ L(H) having many applications [15, 11, 26, 33, 23]
in spectral and soliton theories.

Return now back to studying the structure Delsarte-Darboux transformations for a
polynomial differential operators pencil

L(λ;x|∂) :=

n(L)∑

j=0

Lj(x|∂)λj , (2.39)

where n(L) ∈ Z+ and λ ∈ C is a complex-valued parameter. It is asked to find the
corresponding to (2.39) Delsarte-Darboux transformations Ωλ,± ∈ B(H), λ ∈ C, such that
for some polynomial differential operators pencil L̃(λ;x|∂) ∈ L(H) the following Delsarte-
Lions [2] transmutation condition

L̃Ωλ,± = Ωλ,±L (2.40)

holds for almost all λ ∈ C. For such transformations Ωλ± ∈ B(H) to be found, let us
consider a parameter τ ∈ R dependent differential operator Lτ (x|∂) ∈ L(Hτ ), where

Lτ (x|∂) :=

n(L)∑

j=0

Lj(x|∂)∂j/∂τ j , (2.41)

acting in the functional space Hτ = Cq(L)(Rτ ;H) for some q(L) ∈ Z+. Then one can easily
construct the corresponding Delsarte-Darboux transformations Ωτ,± ∈ B(Hτ ) of Volterra
type for some differential operator expression

L̃τ (x|∂) :=

n(L)∑

j=0

L̃j(x|∂)∂j/∂τ j , (2.42)

if the following Delsarte-Lions [2] transmutation conditions

L̃τΩτ,± = Ωτ,±Lτ (2.43)

hold in Hτ . Thus, making use of the results obtained above, one can write down that

Ωτ,± = 1 −

∫

Σ
dρΣ(ξ)

∫

Σ
dρΣ(η)ψ̃(0)

τ (λ; ξ)Ω−1
(τ0;x0)

(λ; ξ, η) (2.44)

×

∫

S
(m)
± (σ

(m−1)
(τ ;x)

,σ
(m−1)
(τ0;x0)

)
Z(m)[ϕ(0)

τ (λ; η), (·)dx]

defined by means of the following closed subspaces Hτ,0 ⊂ Hτ,− and H∗
τ,0 ⊂ H∗

τ,− :

Hτ,0 := {ψ(0)
τ (λ; ξ) ∈ Hτ,− : Lτψ

(0)
τ (λ; ξ) = 0,

ψ(0)
τ (λ; ξ)|τ=0 = ψ(0)(λ; ξ) ∈ H, Lψ(0)(λ; ξ) = 0,

ψ(0)(λ; ξ)|Γ = 0, λ ∈ C, ξ ∈ Σ},
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H∗
τ,0 := {ϕ(0)

τ (λ; η) ∈ H∗
τ,− : Lτϕ

(0)
τ (λ; η) = 0, (2.45)

ϕ(0)
τ (λ; η)|τ=0 = ϕ(0)(λ; η) ∈ H∗, Lϕ(0)(λ; η) = 0,

ϕ(0)(λ; η)|Γ = 0, λ ∈ C, η ∈ Σ}.

Recalling now that our operators Lj ∈ L(H), j = 0, r(L), do not depend on the parameter
τ ∈ R, one can derive easily from (2.44)

Ω± = 1−

∫

Σ
dρΣ(ξ)

∫

Σ
dρΣ(η)ψ̃(0)(λ; ξ)Ω−1

(x0)
(λ; ξ, η) (2.46)

×

∫

S
(m)
± (σ

(m−1)
(x)

,σ
(m−1)
(x0)

)
Z

(m)
0 [ϕ(0)(λ; η), (·)dx],

where we put σ
(m−1)
x := σ

(m−1)
(τ0;x) , σ

(m−1)
x0 := σ

(m−1)
(τ0;x0)

∈ Cm−1(R
m; C) and

Z
(m)
0 [ϕ(0)(λ; η), ψ(0)dx] := Z(m)[ϕ(0)

τ (λ; η), ψ(0)
τ dx]|dτ=0. (2.47)

The corresponding to (2.46) closed subspaces H0 ∈ H− and H∗
0 ∈ H∗

− are given as follows:

H0 := {ψ(0)(λ; ξ) ∈ H− : Lψ(0)(λ; ξ) = 0,

ψ(0)(λ; ξ)|Γ = 0, λ ∈ C, ξ ∈ Σ}, (2.48)

H∗
τ,0 := {ϕ(0)(λ; η) ∈ H∗

− : Lϕ(0)(λ; η) = 0,

ϕ(0)(λ; η)|Γ = 0, λ ∈ C, η ∈ Σ}.

Thereby, making use of the expressions (2.46) one can construct the Delsarte-Darboux
transformed linear differential pencil L̃ ∈ L(H), whose coefficients are related with those
of the pencil L ∈ L(H) via some Bäcklund type relationships useful for applications (see
[23, 20, 42, 43, 38]) in the soliton theory.

3 Delsarte-Darboux type transmutation operators for spe-

cial multi-dimensional expressions and their applications

3.1 A perturbed self-adjoint Laplace operator in Rn

Consider the Laplace operator −∆m in H := L(Rm; C) perturbed by the multiplication
operator on a function q ∈W 2

2 (Rm; C), that is the operator

L(x|∂) := −∆m + q(x), (3.1)

where x ∈ R
m. The operator (3.1) is self-adjoint in H. Applying the results from Section 1

to the differential expression (3.1) in the Hilbert space H, one can write down the following
invertible Delsarte-Darboux transmutation operators:

Ω± = 1−

∫

σ(L)
dρσ(ξ)

∫

σ(L)
dρσ(ξ)

∫

Σσ

dρΣσ(ξ)

∫

Σσ

dρΣσ(η) (3.2)

×ψ̃(0)(λ; ξ)Ω−1
(x0)(λ; ξ, η)

∫ (0)

S
(m)
± (σ

(m−1)
(x)

,σ
(m−1)
(x0)

)
dyϕ̄(0)⊺(λ; η), (·),
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where σ
(m−1)
x ∈ K(Rm) is some closed maybe non-compact simplicial hyper-surface in R

m

parametrized by a running point x ∈ σ
(m−1)
x , and σ

(m−1)
x0 ∈ K(Rm) is a suitable homological

to σ
(m−1)
x simplicial hypersurface in R

m parametrized by a point x0 ∈ σ
(m−1)
x0 . There exist

exactly two m-dimensional subspaces spanning them, say S
(m)
± (σ

(m−1)
x , σ

(m−1)
x0 ) ∈ K(Rm),

such that S
(m)
+ (σ

(m−1)
x , σ

(m−1)
x0 )∪ S

(m)
− (σ

(m−1)
x , σ

(m−1)
x0 ) = R

m. Taking into account these
subspaces, one can concisely rewrite the Delsarte-Darboux transmutation operators (3.2)
for (3.1):

Ω± = 1+

∫

S
(m)
± (σ

(m−1)
x ,σ

(m−1)
x0

)
dyK̂±(Ω)(x; y)(·), (3.3)

where, as before, x ∈ σ
(m−1)
x and kernels K̂±(Ω) ∈ H− ⊗H− satisfy the equations (2.27),

or equivalently,

−∆m(x; ∂)K̂±(Ω)(x; y) + ∆m(y; ∂)K̂±(Ω)(x; y) (3.4)

= (q(y) − q̃(x))K̂±(Ω)(x; y)

for all x, y ∈ suppK̂±(Ω). Take for simplicity, a non-compact closed simplicial hypersurface

σ
(m−1)
x = σ

(m−1)
x,γ := {y ∈ R

m :< x − y, γ >= 0} and the degenerate simplicial cycle

σ
(m−1)
x0 := {x0 = ∞} ⊂ R

m, where γ ∈ S
m−1 is an arbitrary versor, ||γ|| = 1. Then,

evidently,

S
(m)
± (σ(m−1)

x,γ , σ(m−1)
∞ ) := S

(m)
±γ,x = {y ∈ R

m :< x− y,±γ > ≥ 0} (3.5)

and our transmutation operators (3.3) take the form

Ω±γ = 1+

∫

S
(m)
±γ,x

dyK̂±γ(Ω)(x; y)(·), (3.6)

where suppK̂±γ(Ω) = S
(m)
±γ,x, S

(m)
+γ,x ∩S

(m)
−γ,x = σ

(m−1)
x,γ ∪ σ

(m−1)
∞ and S

(m)
+γ,x ∪S

(m)
−γ,x = R

m for
any direction γ ∈ S

m−1.
The invertible transmutation Volterra operators like (3.6) were constructed before by

L.D. Faddeev [9] for the self-adjoint perturbed Laplace operator (3.1) in R
3. He called

them [9] transformation operators with a Volterra direction γ ∈ S
m−1. It is easy to see

that Faddeev’s expressions (3.6) are very special cases of the general expressions (3.3)
obtained above.

Define now making use of (3.3) the following Fredholm operator in the Hilbert space
H :

Ω := (1+K+(Ω))−1(1+K−(Ω)) = 1+Φ(Ω) (3.7)

with the compact part Φ(Ω) ∈B∞(H). Then the commutation equality

[L,Φ(Ω)] = 0 (3.8)

together with the Gelfand-Levitan-Marchenko equation

K+(Ω)+Φ̂(Ω)+K̂+(Ω)·Φ̂(Ω) =K̂−(Ω) (3.9)
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for the corresponding kernels K̂±(Ω) and Φ̂(Ω) ∈H− ⊗H− hold.
In [9] there was thoroughly analyzed the spectral structure of kernels K̂±(Ω) ∈H−⊗H−

in (3.6) making use of the analytical properties of the corresponding Green’s functions of
the operator (3.1). As one can see from (3.2), these properties depend strongly both on the
structure of the spectral measures ρσ on σ(L) and ρΣσ on Σσ and on analytical behavior

of the kernel Ω∞(λ; ξ, η) ∈ L
(ρ)
2 ( Σσ; C) ⊗ L

(ρ)
2 ( Σσ; C), ξ, η ∈ Σσ, for all λ ∈ σ(L). In [9]

there was stated for any direction γ ∈ S
m−1 the dependence of kernels K̂±(Ω) ∈H− ⊗H−

on the regularized determinant of the resolvent Rµ(L) ∈ B(H), µ ∈ C/σ(L) is a regular
point for the operator (3.1). This dependence can be also clarified if one makes use of the
approach from Section 2.

3.2 A two-dimensional Dirac type operator

Let us define in H := L2(R
2; C2) a two-dimensional Dirac type operator

L̃1(x; ∂) :=

(
∂/∂x1 ũ1(x)
ũ2(x) ∂/∂x2

)
, (3.10)

where x := (x1, x2) ∈ R
2, and coefficients ũj ∈ W 1

2 ( R
2; C), j = 1, 2. The transformation

properties of the operator (3.10) were studied [16] thoroughly by L.P. Nizhnik. In partic-
ular, he constructed some special class of the Delsarte-Darboux transmutation operators
in the form

Ω± = 1+

∫

S
(2)
± (σ

(1)
x ,σ

(1)
∞ )

dyK̂±(Ω)(x; y)(·), (3.11)

where for two orthonormal versors γ1 and γ2 ∈ S
1, ||γ1|| = 1 = ||γ2||,

S
(2)
+ (σ(1)

x , σ(1)
∞ ) := {y ∈ R

2 :< x− y, γ1 >≥ 0} (3.12)

∩{y ∈ R
2 :< x− y, γ2 >≥ 0},

S
(2)
− (σ(1)

x , σ(1)
∞ ) := {y ∈ R

2 :< x− y, γ1 >≤ 0}

∪{y ∈ R
2 :< x− y, γ2 >≤ 0}.

In the case when < x, γj >= xj ∈ R, j = 1, 2, the corresponding kernel

K̂+(Ω) =

(
K

(1)
+,11δ<y−x,γ1> +K

(0)
+,11(x; y) K

(1)
+,12δ<y−x,γ2> +K

(0)
+,12)

K
(1)
+,21δ<y−x,γ1> +K

(0)
+,21(x; y) K

(1)
+,22δ<y−x,γ2> +K

(0)
+,22

)
(3.13)

is Dirac delta-function singular, being, in part, localized on half-lines < y−x, γ2 >= 0 and

< y − x, γ1 >= 0, with regular coefficients K
(l)
+,ij ∈ C1(R2 × R

2; C) for all i, j = 1, 2 and

l = 0, 1. Such a property of the transmutation kernels for the perturbed Laplace operator
(3.1) was also observed in [9], where it was motivated by the necessary condition for the
transformed operator L̃(x; ∂) ∈ L(H) to be differential. As one can check, the same reason
for the existence of singularities holds in (3.13).

Let us now consider the general expression like (3.3) for the corresponding hyper-

surfaces S
(2)
± (σ

(1)
x , σ

(1)
∞ ) spanning between a closed non-compact smooth cycle σ

(1)
x ∈ K(R2)

and the infinite point σ
(1)
∞ := ∞ ∈ K(R2). A running point x ∈ σ

(1)
x is taken to be arbitrary
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but, as usual, fixed. The kernels K̂±(Ω) ∈ H− × H− in (3.11) satisfy the standard
conditions (2.26) and (2.27), that is

(L̃1,ext ⊗ 1)K̂±(Ω) = (1 ⊗ L∗
1,ext)K̂±(Ω), (3.14)

[L1,Φ(Ω)] = 0

for some matrix differential Dirac type operator L1 ∈ L(H) of the form (3.1). Together
with this Dirac operator the following matrix second order differential operator

L̃2(x; ∂) := 1
∂

∂t
+

(
∂2

∂x2
1
± ∂2

∂x2
2
− ṽ2 −2∂ũ1

∂x2

−2∂ũ2
∂x1

∂2

∂x2
1
± ∂2

∂x2
2
− ṽ1

)
(3.15)

in the parametric space H := C1(R;H) was studied in [16, 17] for which scattering theory
was developed and its an application was given for constructing soliton-like exact solutions
to the so called Davey-Stewartson nonlinear dynamical system in partial derivatives. The
latter was based on the fact that two operators L̃1 and L̃2 ∈ L(H) commute with each
other.

Namely, consider the Volterra operators Ω± ∈ B(H) realizing the following Delsarte-
Darboux transmutations:

L̃1Ω± = Ω±L1, L̃2Ω± = Ω±L2. (3.16)

Here we put

L1(x; ∂) : =

(
∂/∂x1 0

0 ∂/∂x2

)
, (3.17)

L2(x; ∂) : = 1
∂

∂t
+

(
∂2

∂x2
1
± ∂2

∂x2
2
− α2(x2) 0

0 ∂2

∂x2
1
± ∂2

∂x2
2
− α1(x1)

)
,

where αj ∈ W 1
2 (R; C), j = 1, 2, are some given functions. It is evident that the operators

(3.17) commute. Then, if the operators Ω± ∈ B(H) exist and satisfy (3.16), the following
commutation condition

[L̃1, L̃2] = 0 (3.18)

holds, exactly as claimed above and effectively exploited before in [16, 17].

Recall now that for the operators Ω± ∈ B(H) to exist they must satisfy additionally
the kernel conditions (3.14) and

(L̃2,ext ⊗ 1)K̂±(Ω) = (1 ⊗ L∗
2,ext)K̂±(Ω), (3.19)

[L2,Φ(Ω)] = 0,

where, as before, the operator Φ(Ω) ∈B∞(H) is defined by (3.7) as

Ω := 1+Φ(Ω). (3.20)



398 J Golenia, A K Prykarpatsky and Y A Prykarpatsky

Owing to the evident commutation condition (3.18) the set of equations (3.14) and (3.19)
is compatible giving rise to the expression like (3.11), where the kernel K̂+(Ω) ∈ H−⊗H−

satisfies the set of differential equations generalizing those from [16, 17]:

∂K+,11

∂x1
+
∂K+,11

∂y1
+ ũ1K+,21 = 0,

∂K+,12

∂x1
+
∂K+,12

∂y1
+ ũ1K+,22 = 0, (3.21)

∂K+,21

∂x2
+
∂K+,21

∂x1
+ ũ2K+,11 = 0,

∂K+,22

∂x2
+
∂K+,22

∂y2
+ ũ2K+,12 = 0,

±
∂ũ1

∂x2
K+,21 =

∂K+,11

∂t
+ [(

∂2

∂x2
1

−
∂2

∂y2
1

) ± (
∂2

∂x2
2

−
∂2

∂y2
2

)]K+,11

+(α2(x2) − ṽ2(x))K+,11

±
∂ũ1

∂x2
K+,21 =

∂K+,22

∂t
+ [(

∂2

∂x2
1

−
∂2

∂y2
1

) ± (
∂2

∂x2
2

−
∂2

∂y2
2

)]K+,22

+(α1(x1) − ṽ1(x))K+,22,

∓2
∂ũ1

∂x2
K+,22 =

∂K+,12

∂t
+ [(

∂2

∂x2
1

−
∂2

∂y2
1

) ± (
∂2

∂x2
2

−
∂2

∂y2
2

)]K+,12

+(α1(x1) − ṽ2(x))K+,22,

2
∂ũ2

∂x1
K+,22 =

∂K+,21

∂t
+ [(

∂2

∂x2
1

−
∂2

∂y2
1

) ± (
∂2

∂x2
2

−
∂2

∂y2
2

)]K+,21

+(α2(x2) − ṽ1(x))K+,11.

Moreover, the following conditions

ũ1(x) = −K
(0)
+,12|y=x, ũ2(x) = −K

(0)
+,21|y=x, (3.22)

ṽ2(x)|x1=−∞ = α2(x2), ṽ1(x)|x2=−∞ = α1(x1)

hold for all x ∈ R
2 and y ∈suppK̂+(Ω), where we took into account the singular series

expansion

K̂+(Ω) =

p(K+)∑

s=0

K
(s)
+ δ

(s−1)

σ
(1)
x

(3.23)

for some finite integer p(K+) ∈ Z+ with respect to the Dirac function δ
σ

(1)
x

: W q
2 (R2; C)

→ R, q ∈ Z+, and its derivatives, having the support (see [35], Chapter 3) coinciding with

the closed cycle σ
(1)
x ∈ K(R2).

Remark 3.1. Concerning the special case (3.13) discussed before in [16, 17], one gets

easily that p(K+) = 1 and σ
(1)
x = ∂(∩j=1,2{y ∈ R

2 :< y − x, γj >= 0}) ⊂suppK̂+(Ω).
It was shown also before that equations like (3.21) and (3.22) possess solutions if the
Gelfand-Levitan-Marchenko equation (2.25) does.
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Making use also of the exact forms of operators L1 and L2 ∈ L(H), one obtains easily
from (3.14) and (3.19) the corresponding set of differential equations for components of
the kernel Φ̂(Ω) ∈ H− ⊗H− :

∂Φ11

∂x1
+
∂Φ11

∂y1
= 0,

∂Φ12

∂x1
+
∂Φ12

∂y1
= 0, (3.24)

∂Φ21

∂x2
+
∂Φ21

∂y2
= 0,

∂Φ22

∂x2
+
∂Φ22

∂y2
= 0,

∂Φ11

∂t
± (

∂2

∂x2
2

−
∂2

∂y2
2

)Φ11 + (α2(y2) − α2(x2))Φ11 = 0,

∂Φ12

∂t
± (

∂2

∂x2
2

−
∂2

∂y2
2

)Φ12 + (α1(y1) − α2(x2))Φ12 = 0,

∂Φ21

∂t
+ (

∂2

∂x2
1

−
∂2

∂y2
1

)Φ21 + (α2(y2) − α1(x1))Φ21 = 0,

∂Φ22

∂t
+ (

∂2

∂x2
1

−
∂2

∂y2
1

)Φ22 + (α1(y1) − α1(x1))Φ22 = 0

for all (x, y) ∈ R
2 ×R

2.The obtained above equations (3.24) generalize those before found
in [16, 17] and used for exactly integrating the well known Devey-Stewartson differential
equation [37, 11, 10] and finding so called soliton like solutions. Concerning our general-
ized case the kernel (3.23) is a solution to the following Gelfand-Levitan-Marchenko type
equations:

K
(0)
+ (x; y) + Φ(0)(x; y) +

∫

S
(2)
+ (σ

(1)
x ,σ

(1)
∞ )

K
(0)
+ (x; ξ)Φ(0)(ξ; y)dξ

+

∫

σ
(1)
x

K
(1)
+ (x; ξ)Φ(0)(ξ; y)dσ(1)

x = 0, (3.25)

K
(1)
+ (x; y) + Φ(1)(x; y) +

∫

S
(2)
+ (σ

(1)
x ,σ

(1)
∞ )

K
(0)
+ (x; ξ)Φ(1)(ξ; y)dξ

+

∫

σ
(1)
x

K
(1)
+ (x; ξ)Φ(1)(ξ; y)dσ(1)

x = 0,

where y ∈ S
(2)
+ (σ

(1)
x , σ

(1)
∞ ) for all x ∈ R

2 and, by definition,

Φ̂(Ω) := Φ(0) + Φ(1)δ
σ

(1)
x

(3.26)

is the corresponding to (3.23) kernel expansion. Since the kernel (3.26) is singular, the
differential equations (3.24) naturally must be treated in the distributional sense [35].

Taking into account the exact forms of ”dressed” differential operators Lj ∈ L(H),
j = 1, 2, given by (3.10) and (3.15) one gets easily that the commutativity condition
(3.18) which gives rise to that of L̃j ∈ L(H), j = 1, 2, being equivalent to the mentioned
before Devey-Stewartson dynamical system

dũ1/dt = −(ũ1,xx + ũ1,yy) + 2(ṽ1 − ṽ2), (3.27)

dũ2/dt = ũ2,xx + ũ2,yy + 2(ṽ2 − ṽ1),

ṽ1,x = (ũ1ũ2)y, ṽ2,x = (ũ1ũ2)x
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on a functional infinite-dymensioanl manifold Mu ⊂ S(R2; C2). The exact soliton-like

solutions to (3.27) are given by expressions (3.22), where the kernel K
(1)
+ (Ω) solves the

second linear integral equation of (3.25). On the other hand-side, there exists the exact
expression (2.4) which solves the set of ”dressed” equations

L̃1ψ̃
(0)(η) = 0, L̃2ψ̃

(0)(η) = 0. (3.28)

Since the kernels Ω(λ, µ) ∈ L
(ρ)
2 (Σ; C)⊗L

(ρ)
2 (Σ; C), for λ, µ ∈ Σ, (t;x) ∈MT∩ S

(2)
+ (σ

(1)
x , σ

(1)
∞ )

are given by means of exact expressions (2.2), one can find via simple calculations the cor-
responding analytical expression for the functions (ũ1, ũ2) ∈ Mu, solving the dynamical
system (3.27). This procedure is often called the Darboux type transformation and was
recently extensively used as a particular case of the construction above in [23] for finding
soliton-like solutions to the Devey-Stewartson (3.27) and related with it two-dimensional
modified Korteweg-de Wries flows on Mu. Moreover, as it can be observed from the tech-
nique used for constructing the Delsarte-Darboux transmutation operators Ω± ∈ B(H),
the set of solutions to (3.27) obtained by means of Delsarte-Darboux transmutations co-
incides completely with the corresponding set of solutions obtaien by means of solving the
realted set of Gelfand-Levitan-Marchenko integral equations (3.24) and (3.25).

4 A generalized affine de Rham-Hodge type differential com-

plex and related self-dual Yang-Mills flows.

Consider the following set of affine differential expressions in H := C1(Rm+1;H), H :=
L2(R

m; CN ) :

Li(λ) := 1
∂

∂pi
− λ

∂

∂xi
+Ai(x; p|t), (4.1)

where x ∈ R
m, (t, p) ∈ R

m+1, matrices Ai ∈ C1(Rm+1;S(Rm;EndCN )), i = 1,m, and a
parameter λ ∈ C. One can easily now construct an exact generalized affine de Rham-Hodge
differential complex on MT := R

m+1×R
m as

H → Λ(MT;H)
dL(λ)
→ Λ1(MT;H) →

dL(λ)... → Λ2m+1(MT;H)
dL(λ)
→ 0, (4.2)

where, by definition, the differentiation

dL(λ) := dt ∧ B(λ) +

m∑

i=1

dpi ∧ Li(λ) (4.3)

and the affine matrix

B(λ) := ∂/∂t−

n(B)+q∑

s=0

Bs(x; p|t)λ
n(B)−s (4.4)

with matrices Bs ∈ C1(Rm+1;S(Rm;EndCN )), s = 0, n(B) + q, n(B), q ∈ Z+. The affine
complex (4.2) will be exact for all λ ∈ C iff the following generalized self-dual Yang-Mills
equations [43]

∂Ai/∂pj − ∂Aj/∂pi − [Ai, Aj ] = 0, ∂Ai/∂xj − ∂Aj/∂xi = 0,



Gelfand-Levitan-Marchenko Type Equations 401

∂B0/∂xi = 0, ∂Bn(B)+q/∂pi = 0, ∂Bs/∂xi = ∂Bs−1/∂pi + [Ai, Bs−1] = 0,

∂Ai/∂t+ ∂Bn(B)/∂pi − ∂Bn(B)+1/∂xi + [Ai, Bn(B)] = 0 (4.5)

hold for all i, j = 1,m and s = 0, n(B) ∨ n(B) + q, n(B) + 2. Assume now that the condi-
tions (4.5) are satisfied on MT. Then, making the change C ∋λ→ ∂/∂τ : H → H, τ ∈ R,
one finds the following set of pure differential expressions

Li(τ) : = 1
∂

∂pi
−

∂2

∂τ∂xi
+Ai(x; p|t), (4.6)

B(τ) : = ∂/∂t −

n(B)+q∑

s=0

Bs(x; p|t)(
∂

∂τ
)n(B)−s,

where matrices Ai, i = 1,m, and Bs, s = 0, n(B) + q, do not depend on the variable τ ∈ R.
By means of operator expressions (4.6) one can now naturally construct a new differential
complex related with that of (4.2):

H(τ) → Λ(MT,τ ;H(τ))
dL→ Λ1(MT,τ ;H(τ)) →

dL... → Λ2m+2(MT,τ ;H(τ))
dL→ 0, (4.7)

where, by definition, H(τ) := C1(Rm+1;H(τ)), H(τ) := L2(R
m × Rτ ; C

N ) and

dL := dt ∧ B(τ) +

m∑

i=1

dpi ∧ Li(τ). (4.8)

Owing to the condition (4.5) the following lemma holds.

Lemma 4.1. The differential complex (4.7) is exact.

Therefore, one can construct the standard generalized de Rham-Hodge type Hilbert
space decomposition

HΛ(MT,τ ) :=
k=2m+2

⊕
k−0

Hk
Λ(MT,τ ) (4.9)

as well as the corresponding Hilbert-Schmidt rigging

HΛ,+(MT,τ ) ⊂ HΛ(MT,τ ) ⊂ HΛ,−(MT,τ ). (4.10)

Making use now of the results obtained in Subsection 1.5, one can define the Delsarte
closed subspaces H0(τ) and H̃0(τ) ⊂ H(τ)−, related with the exact complex (4.7):

H0(τ) : = {ψ
(0)
(τ)(ξ) ∈ H0

Λ,−(MT,τ ) : Lj(τ)ψ
(0)
(τ)(ξ) = 0, (4.11)

B(τ)ψ
(0)
(τ)(ξ) = 0, ψ

(0)
(τ)(ξ)|Γ = 0, ψ

(0)
(τ)(ξ)|t=0 = eλτψ

(0)
λ (η) ∈ H0

Λ,−(MRm,τ ),

Lj(λ)ψ
(0)
λ (η) = 0, ξ = (λ; η) ∈ Σ : = C × Σ

(m)
C

},

H̃0(τ) : = {ψ̃
(0)
(τ)(ξ) ∈ H0

Λ,−(MT,τ ) : L̃
(0)
j(τ)ψ̃

(0)
(τ)(ξ) = 0,

B̃(τ)ψ̃
(0)
(τ)(ξ) = 0, ψ̃

(0)
(τ)(ξ)|Γ̃ = 0, ψ̃

(0)
(τ)(ξ)|t=0 = eλτ ψ̃

(0)
λ (η) ∈ H0

Λ,−(MRm,τ ),

L̃j(λ)ψ̃
(0)
λ (η) = 0, ξ = (λ; η) ∈ Σ : = C × Σ

(m)
C

},
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where Γ and Γ̃ ⊂MT,τare some smooth hyper-surfaces. The similar expressions correspond
to the adjoint closed subspaces H∗

0(τ) and H̃∗
0(τ) ⊂ H∗

τ,− :

H̃0(τ) : = {ϕ
(0)
(τ)(ξ) ∈ H0

Λ,−(MT,τ ) : L∗
j(τ)ϕ

(0)
(τ)(ξ) = 0, (4.12)

B(τ)ϕ
(0)
(τ)(ξ) = 0, ϕ

(0)
(τ)(ξ)|Γ = 0, ϕ

(0)
(τ)(ξ)|t=0 = e−λ̄τϕ

(0)
λ (η) ∈ H0

Λ,−(MRm,τ ),

L∗
j(λ)ϕ

(0)
λ (η) = 0, ξ = (λ; η) ∈ Σ : = C × Σ

(m)
C

},

H̃0(τ) : = {ϕ̃
(0)
(τ)(ξ) ∈ H0

Λ,−(MT,τ ) : L̃∗
j(τ)ϕ̃

(0)
(τ)(ξ) = 0,

B̃∗
(τ)ϕ̃

(0)
(τ)(ξ) = 0, ϕ̃

(0)
(τ)(ξ)|Γ̃ = 0, ϕ̃

(0)
(τ)(ξ)|t=0 = e−λ̄τ ϕ̃

(0)
λ (η) ∈ H0

Λ,−(MRm,τ ),

L̃∗
j(λ)ϕ̃

(0)
λ (η) = 0, ξ = (λ; η) ∈ Σ : = C × Σ

(m)
C

}.

Based on the closed subspaces (4.12) and (4.11), one can suitably construct the Darboux

type kernel Ω̃(t,x;τ)(η, ξ) ∈ L
(ρ)
2 (Σ

(m)
C

; C) ⊗ L
(ρ)
2 (Σ

(m)
C

; C), η, ξ ∈ Σ
(m)
C

, and further, the
corresponding Delsarte transmutation mappings Ω± ∈ B(H(τ)). Namely, assume that the
following conditions

ψ
(0)
(τ)(ξ) := ψ̃

(0)
(τ)(ξ) · Ω̃

−1
(t,p;x;τ)Ω̃(t0,p0,x0;τ) (4.13)

for any ξ ∈ C×Σ
(m)
C

hold, where

Ω̃(t,x;τ)(µ, ξ) :=

∫

σ(t;x;τ)

Ω̃
(2m+1)
(τ) [e−λ̄τ ϕ̃(0)(µ), eλτ ψ̃(0)(η)dx ∧ dp ∧ dt],

Z̃
(2m+1)
(τ) [e−λ̄τ ϕ̃(0)(µ),

m∑

i=1

eλτ ψ̃(0)(ξ(i)) ∧ dτ ∧ dx
m
∧

j 6=i
dpj ] (4.14)

: = dΩ̃
(2m)
(τ) [e−λ̄τ ϕ̃(0)(µ),

m∑

i=1

eλτ ψ̃(0)(ξ(i)) ∧ dτ ∧ dx
m
∧

j 6=i
dpj ],

and, similarly to (1.25), there holds the relationship

< d∗
L̃
ϕ̃(0)(µ)e−λ̄τ , ∗

m∑

i=1

eλτ ψ̃(0)(ξ(i))dt ∧ dτ ∧ dx
m
∧

j 6=i
dpj > (4.15)

= < (∗)−1ϕ̃(0)(µ)e−λ̄τ , dL̃(
m∑

i=1

eλτ ψ̃(0)(ξ(i))dt ∧ dτ ∧ dx
m
∧

j 6=i
dpj) >

+dZ̃
(2m+1)
(τ) [ϕ̃(0)(µ)e−λ̄τ ,

m∑

i=1

eλτ ψ̃(0)(ξ(i))dt ∧ dτ ∧ dx
m
∧

j 6=i
dpj],

defining the exact (2m + 1)-form Z̃
(2m+1)
(τ) ∈ Λ2m+1(MT,τ ; C). Compute now the Delsarte

transformed differential expressions

Lj(τ) := Ω̂
−1
(τ)±L̃j(τ)Ω̂(τ)±, B(τ) := Ω̂

−1
(τ)±B̃(τ)Ω̂(τ)± (4.16)
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for any j = 1,m, where, by definition,

L̃j(τ) : = 1
∂

∂pj
−

∂2

∂τ∂xj
+ Āj, (4.17)

B(τ) : = ∂/∂t−

n(B)+q∑

s=0

B̄s(
∂

∂τ
)n(B)−s

with all matrices Āj ∈ EndCm, j = 1,m, and B̄s ∈ EndCm, s = 0, n(B) + q, being
constant. This means, in particular, the commuting relationships

[L̃j(τ), L̃i(τ)] = 0, [L̃j(τ), B̃(τ)] = 0 (4.18)

hold for all i, j = 1,m. Owing to the expressions (4.16) the induced commuting relation-
ships

[Lj(τ),Li(τ)] = 0, [Lj(τ),B(τ)] = 0 (4.19)

evidently hold, coinciding exactly with relationships (4.5). Moreover, reducing our differ-
ential expressions (4.16) upon functional subspaces H(λ) := eλτH, λ ∈ C, one gets easily
the set of affine differential expressions (4.1) and (4.4). Write down now the respectively
reduced Delsarte transmutation operators

Ω̂± = 1−

∫

Σ
(m)
C

dρ
Σ

(m)
C

(ν)

∫

Σ
(m)
C

dρ
Σ

(m)
C

(η)ψ(0)(λ; ν)Ω̃−1
(t0,p0;x0)

(λ; ν, η)

×

∫

S
(2m+1)
± (σ

(2m)
(t,p;x)

,σ
(2m)
(tt0,p0;x0)

)
Z̃(2m+1)[ϕ̃(0)(λ; ν), (·)

m∑

i=1

dt ∧ dx
m
∧

j 6=i
dpj ], (4.20)

where σ
(2m)
(t,p;x) and σ

(2m)
(tt0,p0;x0)

∈ K(MT) are some 2m-dimensional closed singular simplexes,
and by definition,

Z̃(2m+1)[ϕ̃(0)(λ; ν),

m∑

i=1

ψ̃(0)(λ; η(i))dt ∧ dx
m
∧

j 6=i
dpj ]

: = Z̃
(2m+1)
(τ) [e−λ̄τ ϕ̃(0)(λ; ν),

m∑

i=1

eλτ ψ̃(0)(λ; η(i))dτ ∧ dt ∧ dx
m
∧

j 6=i
dpj]|dτ=0,

dΩ̃(t,p;x)(λ; ν, η) := Z̃(2m+1)[ϕ̃(0)(λ; ν),
m∑

i=1

ψ̃(0)(λ; η(i))dt ∧ dx
m
∧

j 6=i
dpj], (4.21)

since the (2m+1)-form (4.21) is owing to (4.15) also exact for any (λ; ν, η) ∈ C × (Σ
(m)
C

×

Σ
(m)
C

). Thus, the operator expression (4.20) if applied to the operators (4.17) reduced upon
the functional subspace H(λ) ≃ H, λ ∈ C, gives rise to the differential expressions

Lj(λ) := Ω̂
−1
± L̃j(λ)Ω̂± B(λ) := Ω̂

−1
± B̃(λ)Ω̂±, (4.22)

where Lj(λ)H(λ) = Lj(τ)H(λ), B(λ)H(λ) = B(τ)(λ)H(λ), j = 1,m, coinciding with affine
differential expressions (4.1) and (4.4). Concerning application of these results to finding
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exact soliton like solutions to self-dual Yang-Mills equations (4.5), it is enough to mention
that the relationship (4.13) reduced upon the subspace H(λ) ≃ H, λ ∈ C, gives rise to the
following mapping:

ψ(0)(λ; η) := ψ̃(0)(λ; η) · Ω̃−1
(t,p;x)Ω̃(t0,p0;x0), (4.23)

where kernels Ω̃(t,p;x;τ)(λ; η, ξ) ∈ L
(ρ)
2 (Σ

(m)
C

; C)⊗L
(ρ)
2 (Σ

(m)
C

; C), η, ξ ∈ Σ
(m)
C

, for all (t, p;x) ∈

MT and λ ∈ C. Since the element ψ(0)(λ; η) ∈ H− for any (λ; ξ) ∈ C×Σ
(m)
C

satisfies the
set of differential equations

Li(λ)ψ(0)(λ; η) = 0, B(λ)ψ(0)(λ; η) = 0, (4.24)

for all i = 1,m, from (4.23) and (4.24) one finds easily exact expressions for the corre-
sponding matrices Aj and Bs ∈ C

1(R×R
m+1;S(Rm;EndCN )), j = 1,m, s = 0, n(B) + q,

satisfying the self-dual Yang-Mills equations (4.5). This leads to the following result.

Theorem 4.2. The integral expressions (4.20) in H are the Delsarte transmutation opera-
tors corresponding to the affine differential expressions (4.1), (4.5) and constant operators

L̃i(λ) := 1
∂

∂pi
− λ

∂

∂xi
+ Ā, B̃(λ) := ∂/∂t−

n(B)+q∑

s=0

B̄sλ
n(B)−s (4.25)

for any λ ∈ C. The mapping (4.23) realizes the isomorphisms between the closed subspaces

H0 : = {ψ(0)(λ; η) ∈ H− : dL(λ)ψ
(0)(λ; η) = 0, ψ(0)(λ; η)|t=0 (4.26)

= ψ
(0)
λ (η) ∈ H−, ψ

(0)(λ; η)|Γ = 0, (λ; η) ∈ C × Σ
(m)
C

}

and

H̃0 : = {ψ̃(0)(λ; η) ∈ H− : d
(0)

L̃(λ)
ψ̃(λ; η) = 0, ψ̃(0)(λ; η)|t=0 (4.27)

= ψ̃
(0)
λ (η) ∈ H−, ψ̃

(0)(λ; η)|Γ̃ = 0, (λ; η) ∈ C×Σ
(m)
C

}

for any parameter λ ∈ C. Moreover, the expressions (4.23) generate the standard Darboux
type transformations for the set of operators (4.25) and (4.1), (4.4) via the corresponding
set of linear equations (4.24), thereby producing exact soliton-like solutions to the self-dual
Yang-Mills equations (4.5).

As a simple partial consequence from Theorem 3.2 one retrieves all of the results ob-
tained in [43], where the Delsarte-Darboux mapping (4.23) was chosen completely a priori
without any proof and motivation in the form of some affine gauge transformation.

Results similar to the above can be with a minor change applied also to the affine
generalized differential de Rham-Hodge complex (4.2) with the external differentiation
(4.3), where

Li(λ) : = 1
∂

∂pi
− (

ni(L)∑

k=0

aikλ
k+1)

∂

∂xi
+

ni(L)∑

k=0

Aikλ
k,

B̃(λ) : = ∂/∂t−

n(B)+q∑

s=0

B̄sλ
n(B)−s, (4.28)
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or

Li(λ) : = 1
∂

∂pi
− (

ni(L)∑

k=0

a
(j)
ik λ

k+1)
∂

∂xj
+

ni(L)∑

k=0

Aikλ
k,

B̃(λ) : = ∂/∂t−

n(B)+q∑

s=0

B̄sλ
n(B)−s, (4.29)

for i = 1,m, λ ∈ C. The case (4.28) was analyzed recently also in [42] by means of similar
gauage type transformations which was used before in [43]. Regrettably, the results ob-
tained there are too complicated and unwiedly, so one needs to use more mathematically
motivated, clear and less cumbersome techniques for finding Delsarte-Darboux transfor-
mations and related soliton-like exact solutions.
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