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Event monitoring and determination is a popular application in WSN. Considering the special circumstance that 
some nodes of the wireless sensor network are faulty, a fault tolerant schema for data aggregation based on event 
clustering was proposed. Also, an improved HRTS algorithm named T-HRTS which based on Hierarchy 
Referencing Clock Synchronization resolving the byzantine general problem will be introduced. 
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1. Introduction 

Over the past few years distributed wireless sensor 
networks (WSN) have been the focus of considerable 
research for both civil and military applications. 
Wireless sensor network consisting of large number of 
micro sensor nodes can complement the collaborative 
awareness in coverage area. Sensor network is the 
bridge connecting the objective physical world and the 
virtual digital world accurately monitoring remote 
environment intelligently by combing the data from 
individual nodes. 1 

When event was detected, data from individual 
sensor must be aggregated to determine abnormality 
level. Control algorithm is based on the level of the 
abnormality, so how to determine a relatively exact 
level is crucial. When measuring the abnormality, we 
should consider either the transmission route throughout 
the network or the same time spot sensors gathering the 
data. 

Data acquisition, processing and transmission in 
sensor network have the nature of timing sequence 
which usually requires nodes in the network have the 
same clock, thus the clock synchronization technology 
is one of the important supporting technology for sensor 
networks.  
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Node in the distributed system has its own local 
clock, and it’s difficult to achieve long-term time 
synchronization between nodes due to some internal 
factors such as crystal oscillator frequency deviation 
and a number of external influences such as temperature 
changes, electromagnetic interference, malicious attacks 
including external and internal attacks and plant ageing. 
External attacks are those in which an attacker 
manipulates the communication between pairs of trusted 
nodes and causes the nodes to desynchronize, or to 
remain un-synchronized even after a successful run of 
the synchronization protocol. Pulse delay attack is an 
example of external attack. Internal attacks are those in 
which internal attackers (group members) report false 
clock references to their neighboring nodes. For such a 
process to be fault-tolerant, the clock synchronization 
algorithm must work despite faulty behavior by some 
processes and clocks.14 

Several clock synchronization protocols have been 
proposed for sensor networks to achieve either pair-wise 
clock synchronization or global clock 
synchronization.9,16,17 Pair-wise clock synchronization 
aims to obtain high precision clock synchronization 
between pairs of neighbor nodes, while global clock 
synchronization aims to provide network-wide clock 
synchronization in a sensor network. Existing pair-wise 
clock synchronization protocols use either receiver-
receiver synchronization,16 in which a reference node 
broadcasts a reference packet to help pairs of receivers 
identify the clock differences, or sender-receiver 
synchronization,9 where a sender communicates with a 
receiver to estimate the clock difference. Most of the 
global clock synchronization protocols establish multi-
hop paths in a sensor network so that all the nodes can 
synchronize their clocks to a given source based on 
these paths and the pair-wise clock differences between 
adjacent nodes in these paths. 18  

It is natural to consider fault-tolerant clock 
synchronization techniques, which have been studied 
extensively in the context of distributed systems. 
8,14,15,19,20 However, traditional fault-tolerant clock 
synchronization techniques are not directly applicable to 
sensor networks. These techniques were developed for 
distributed systems that do not have the same resource 
constraints as sensor networks. All of these techniques 
involve heavy communication among the nodes, and 
sometimes heavy computation as well. This is because 
these techniques either use digital signatures or multiple 
copies of messages to prevent a malicious node from 
modifying or destroying clock information sent by non-
faulty nodes without being detected. Digital signature is 
usually not practical in resource constrained sensor 
networks. Even when digital signature is used, each 
node still needs to send a message to every other node 
in each synchronization round, resulting in at least O (n2) 

communication complexity, where n is the number of 
nodes. Some schemes require that all nodes that receive 
certain messages process and forward these messages to 
all the other nodes immediately, resulting in a high 
probability of message collisions if used in sensor 
networks. 20,21 

In this paper, we develop a fault-tolerant clock 
synchronization scheme for clusters of sensor nodes, 
where the nodes in each cluster can communicate with 
cluster-head directly. In each round of clock 
synchronization within a cluster, every node broadcast 
received data from other nodes in last round.  

This paper is an extension of paper named “Time 
Synchronization for Failure Tolerance in Wireless 
Sensor Network” in SNPD2012. 

The rest of the paper is organized as follows. In 
Section II, we introduce the fault tolerant schema for 
data aggregation. In Section III, we describe HRTS. In 
Section IV, we put forward the approach of Clock 
Synchronization with Failure Tolerance. Section V 
provides the conclusion.  

2. A Fault Tolerant Schema for Data 
Aggregation 

2.1. Abnormality determination 

When detect abnormality, sensors must be clustered 
into numbers of local sensor networks according to the 
region they are located. Besides, each region of sensors 
has their own autonomy. In other words, all sensors, 
which are in the same region, can execute the proposed 
protocol without the sink and other unconcerned sensors. 
This can reduce the time for collecting data and 
designing the final result.  

The clustering process is as follows: 
A reference node will be regarded as level 1 named 

root. Generally, node receiving the event with the most 
power is selected as reference. The reference node 
broadcasts the rating information containing its level 
and number. Each node receiving the rating information 
sets its levels as reference node’s level plus 1 and adds 
the node number and level to its neighbor list. 

Then, second-level nodes broadcast rating 
information. The nodes receiving the information set 
their level as sender’s level plus 1 if they have still no 
level, at the same time adding the node number and 
level to their neighbor list. And so on, until all nodes 
have their own levels, and each node knows the number 
and level of all their neighbor nodes. So the nodes can 
be divided into three categories as parent node, neighbor 
node at the same level and child node. 

After clustering, the proposed protocol can let each 
sensor reach an agreement and do the corresponding 
action with the following assumptions. 
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➢  Let N be the set of all sensors in the local 
autonomous WSN and| N |=n. 
➢  The total number of faulty sensors and 

transmission media in the local WSN is n-1)/3 . 
➢  Each sensor needs to collect messages through 

(n−1)/3 +1 rounds of message exchange. 
➢Each sensor has its own initial value Vi.  
In classic WSN, if the detected value meets some 

condition, then the initial value must be set to 1, 
otherwise, 0. Take the fire control system for instance, if 
the sensor detects the temperature is higher than 50°C, 
then its initial value is 1, otherwise, 0 as default. 23 

While considering the level of abnormality in WSN, 
take the water quality control system for instance, if the 
sensor detects the PH is higher than 8 or lower than 6, 
then its initial value is 1, if the PH is higher than 9 or 
lower than 5, then its initial value is 2, if the PH is 
higher than 10 or lower than 4, then its initial value is 3, 
otherwise, 0 as default. 

When sensors detect an event, they must decide their 
own initial value for running the consensus problem 
algorithm. After that, each sensor continues to execute 
the protocol. The proposed protocol includes message 
exchange phase and decision phase. Message in this 
paper consists of node ID, node state, PH value, 
sampling frequency and local clock. 

In the message exchange phase, each sensor 
collects and exchanges messages from other sensors 
with (n−1)/3 +1 rounds of message exchange. As 
shown in Fig. 1, all the received messages are used to 
construct a tree called M-tree.24 In Figure 1, the message 
received from each sensor in the first round will be 
saved in the first level of the tree and we use Vi to 
represent it. During the second to the ( (n−1)/3 +1)th 
rounds of message exchange phase, each sensor 
exchanges the received messages, which come from  
 
 
 

previous rounds, to other sensors. Then it stores the 
received messages to the second level and we use Vj:i 
(where j<>i) to represent it, continuing to the 
( (n−1)/3 +1)th level of the M-Tree. Each level of the 
M-Tree contains a round of received messages and each 
vertex is labeled with a non-repeating sequence of 
sensor identifiers to avoid the repeating effect from the 
sender. 

2.2. Proposed protocol 

After finishing (n−1)/3 +1 rounds of message 
exchange, each sensor must execute the agreement 
phase. The proposed protocol is shown in Fig. 2. 
 
 
Protocol 

Definitions: 
n: The number of sensors in one cluster 
Vi: The initial message sent by each sensor 
V j:i: The message received by sensor i from sensor j 
f:  (n−1)/3   
Major(v): majority value of each vertex 
Resolve(v): A function of taking the common value 

Message exchange phase: 
Round 1: 
1. Initiate each sensor’s value in level 0 
2. store value Vi in level 1 
Round 2: 
1. send level 1 of your tree to all 
2. store value V j:i in level 2  
Continue for f + 1 rounds 
Calculating the Decision: 
In  round  f  +  1,  each  sensor  uses  the  values  in  its  tree  to 
compute  its  decision.Recursively  compute  the  "decision" 
value for the root of the tree. 
Function major() 

 
Definitions: 
Vi: The initial message sent by each sensor 
Major(x,y):  get  majority  when  value  is  in  {x,y},  return  the 
number of the majority  
initiate: 

if sensor’s value is 0 then vi=0; 
else vi=1; 

major(0,1): 
if the number of 0 is more than one half 
major()=0; 
else if major()=1 
  {  
delete vertex having value 0; 

   Get vertex’s true value vi; 
//vi must value in {1,2,3} in this paper 
   major(1,major(2,3)); 

 

Fig.1. M-TREE for V1 
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} 

Function decision() 

Vi: The initial message sent by each sensor 

decision(v): 
if v a leaf 
 decision(v)= vi 
else 
decision(v)=major( decision (v') : v' is a child of V) 

Fig.2. The proposed protocol and function 

3. Hierarchy Referencing Clock 
Synchronization Protocol  

3.1. HRTS in single-hop network 

HRTS is based on the sender-receiver clock 
synchronization mechanism. HRTS achieve clock 
synchronization between the sender and the receiver 
mainly through three data communications. 11 In the first 
synchronous communication process, the reference node 
(sender) broadcasts a synchronization request command 
frame named f1 and record the time t1. The 
synchronization request command frame contains a 
response node which is randomly selected in the 
reference node’s neighbor table to complete the 
communication process. All nodes within the broadcast 
range of the reference node record the f1’s arriving 
time, but only the response node will reply to the 
command frame. The reception moment of the neighbor 
node i is denoted by t2i and that of answer node is 
denoted by t2.  
        In the second synchronous communication process, 
response node reply to the reference node with a 
synchronization response command frame named f2 
which contains the moment t2 when response node 
received the synchronization request command frame 
F1 and the moment t3 when response node sends frame 
f2. Reference node recorded its reception moment of f2 
as t4.  

The above-mentioned time is local time in each 
node. It’s assumed that the message transmission time 
between any two nodes is the same and is denoted by d. 
The time offset between the sender and receiver is fixed 
during the period of time t1 to t4 which denoted by Δ. 
The local time of reference node is denoted by Tr, 
response node by Tp and other nodes i by Ti. When the 
reference node receives f2, we can get the following 
relationship: 
Δ = (t2- t1+ t3 - t4) /2   

With the above relationship, the reference node will 
broadcast a synchronization command frame again 
named f3 which is filled with t2 and the value of Δ. 
Neighbor nodes can calibrate their own local time after 
receiving f3 according to the information contained in 
the command frame. The specific relationship is as 
follows: 

Tr = Ti+ t2- t2i–Δ      
The equation above can calibrate the local time of 

node i and t2 - t2i –Δ is called compensation time of 
node i. After the synchronization process, all neighbor 
nodes can keep pace with reference node. 

It can be seen that it is bidirectional synchronization 
between reference node and response node, while 
unidirectional broadcast synchronization between the 
reference node and other neighbors. 

3.2. Hierarchical cluster tree in HRTS  

After clustering, child nodes having the same parent 
compose a cluster. The node having the largest degrees 
will be selected as the head of itself and its neighbors at 
the same level in the cluster. Each node and its child 
nodes constitute a connected single-hop area, and the 
network is divided into a lot of single-hop areas that 
nodes can communicate with each other directly.  

When applying HRTS into multi-hop network, with 
a hierarchical cluster tree, HRTS can be applied in 
single-hop areas directly.  

If the nodes are deployed as in Fig. 3, where node 1 
is most powerful, the tree will be created as Fig. 4. 

4. Clock Synchronization for Failure Tolerance 

4.1. Node Faults 

Nodes have several hardware and software 
components that can produce malfunctions. For 
example, the enclosure can suffer impacts and expose 
the hardware of the sensor node to the extreme 
conditions of the environment.  

When the battery of a node reaches a certain stage, 
sensor readings may become incorrect. Hardware 
failures will generally lead to software failure. A Data 
Acquisition application will not perform properly if the 
underlying sensors are providing incorrect readings. 
Nevertheless, some hardware failures do not affect all 
the services in a sensor node. In the example discussed, 
although the node cannot be used to provide correct 
sensor readings it still can be used to route packages in 
the sensor network.15 
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Organizing a network in clusters is an approach used 
in many applications, for example to extend the lifetime 
of the network. A small number of nodes are selected to 
become cluster heads. They are responsible for 
coordinating the nodes in their clusters, for instance by 
collecting data from them and forwarding it to the base 
station.  

In case that a cluster head fails, no messages of its 
cluster will be forwarded to the base station any longer. 
The cluster head can also intentionally or due to 
software bugs forward incorrect information. Depending 
on the application case, the impact of such a failure can 
vary from quality degradation of measurements to alarm 
messages not being delivered to a back-end system. 

While forwarding messages, nodes can aggregate 
data from multiple other nodes in order to reduce the 
amount of data sent to the base station. One common 
simple approach is to calculate the average of correlated 
measured values such as temperature, humidity and 
pressure, sending only one message to the back-end. 

If a node generates incorrect data, the data 
aggregation results can suffer deviations from the real 
value. Also, if a node responsible for generating the 
aggregated data is subject to a value failure, the base 
station will receive incorrect information of an entire 
region of the network. 

 
In case of synchronization, a cluster head can suffer 
power failure and stop responding to requests of 
synchronization, or it can start sending arbitrary clock 
either intentionally or due to a malfunction.  

4.2. Major clock in T-HRTS 

In practical applications, it can be considered the 
same clock when clock error between two sensor nodes 
is relatively smaller compared with the synchronization 
precision. 

Definition 1: In a cluster, if there are multiple 
neighbor nodes that have the same clock with the head 
node, the clock of the head node is called the major 
clock. 

Definition 2: In a cluster, let θ=t2 - t2i, when θ is 
small enough to be omitted, it is regarded that the clock 
of cluster head and node i is the same. 

4.3. Fault Detection and recovery 

Generally, if a node is non-faulty, the clock may not 
shift much in a cycle. There is special case that the 
intended reference node is attacker and sends error in 
the third process in HRTS. In this case, the 
synchronization will fail. Thus, the root of the sub-tree 
must be changed to deal with the attacker. 

After initializing, when synchronization is required, 
the root node will broadcast its own clock Tr and Δ to 
its child.  The cluster head which is response node 
decides the major clock. If the root’s clock is not in the 
majority, it may be fault. 

Applying the assumption in multi-hop network, 
when the root of sub-tree is fault, it sends faulty clock to 
the children. It may be that the clock in the third process 
is earlier than that in the first process. So the 
synchronization result will be an unreasonable clock. 

In order to detect all the faulty, detection procedure 
must execute from top to bottom all through the tree.  If 
the root is fault, mobile node can be used instead of it. If 
the cluster head if fault, we use Byzantine algorithm for 
each sub-tree. 

Exponential Tree Algorithm for Byzantine [2] is as 
follows: 

Each tree node is labeled with a sequence of unique 
processor indices. Root's level is 0 and root has n 
children, labeled 0 through n – 1 where n is the number 
of nodes in the sub-tree. 

Child node labeled i has n - 1 children, labeled i : 0  

Fig.3. Deployment of nodes 

 

Fig.4. Hierarchical cluster tree 
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through i : n-1 (skipping i : i). 
Node at level d labeled v has n - d children, labeled 

v : 0 through v : n-1 (skipping any index appearing in v). 
Nodes at level f + 1 are leaves and f is the number of 
fault nodes that must meet with the inequality as 
3f+1<=n. The process continues for f+1 rounds. 

For example, in Fig. 4, the sub-tree (4, 10, 11, 12 ) 
may build a tree like Fig. 5. 

In the exponential tree, node 4 is proposed as a 
common node. At the third level, there are three nodes 
indicating that node 4 receives local clock from node 10, 
11 and 12. With the limitation that 3f+1<=n, the 
majority clock of the three nodes must be the non-fault 
clock. Even though the root of sub-tree is fault, the 
common clock could not be impacted by using the 
major clock. 

4.4.  Synchronization process in T-HRTS 

After recreating the hierarchical cluster tree, the 
child synchronizes with the root in every sub-tree 
according to T-HRTS algorithm.  As a result, the clock 
throughout the network will be the same at a moment. 

If the major clock has been decided as the cluster 
head’s clock, the clock will be sent to its root and then 
to the base. If this is not the case, the sub-tree will be 
synchronized with the root.  

In our model, when the root is fault, it may send 
fake clock to its sub-tree. With using HRTS, the fake 
clock will spread to the cluster head, then to all the tree 
nodes. Therefore, fault-tolerant can’t be implemented 
which is a crucial requirement in distributed system. In 
our algorithm, although root is fault, its children may 
have the approximate clock that can serve as the major 
clock to ensure the right clock throughout the network.  

We assume four faulty nodes and test the model as 
the outcome bellow. 

Table 1 shows the worst condition that even if all the 
roots of sub-trees are fault, the clock in the network can 
be synchronized correctly. 

4.5.  Performance Analysis 

This algorithm is based on the HRTS algorithm with 
adding the concept of major clock. In HRTS, the 
optimization of selecting synchronous reference node is  
 
not considered although it would be fault. In T-HRTS, 
reference node is not necessarily the parent node, but 
probably the cluster head node having major clock. It 
can tolerant some failures with executing byzantine 
algorithm. The sub-tree at all levels need to decide 
which clock is the common right one, then update local 
clock for at most n-m times where n is the total number 
of the sub-tree and m is the number of the nodes having 
major clock. Although the overhead of the packet is not 
reduced, the frequency of clock updating is dramatically 
reduced especially when the scale of the network is 
large and the required clock synchronization precision is 
low. In addition, there is a crucial parameter θ that need 
to be researched especially. 

5. Conclusion 

When detecting an event, data form sensors in a 
network must be aggregated to determine a common 
value which will be used as a crucial parameter of 
certain execution. It is crucial to get a correct decision 
with considering transmission route and the same time 
spot sensors gathering the data. Practically, some 
sensors may get faulty and the transmission media 
between sensors may get disturbed by the environment 
noise. These facts may conduct the fault detected result 
and then cause an erroneous reaction. In the past, many 
solutions are proposed to detect faulty sensors. 
However, we must take the level of abnormality for 
granted. In this study, we propose a control algorithm 
solution to raise the correctness of detected result even 
when some sensors are faulty and some of the 
transmission media between sensors are disturbed. 
Under our scheme, sensors can take certain action with 
informing other nodes to change synchronously so that 
the local WSN application can take the corresponding 

 

Fig.5. Exponential Tree 

Table1. The faulty nodes and Testing 

level 
 

Faulty 
nodes 

Major 
clock 

Most Clock 
update 

fault-
tolerant 

1 1 mobile NULL 

YES 
2 2 7 {6、8、9}  
2 4 11 {10、12} 
3 NULL NULL NULL 
2 3 1 {2、4、5} 

YES 3 7 2 {6、8、9} 
3 11 4 {10、12} 
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actions more accurately and save storage space and 
electrical power. 
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