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Multi-core processors are becoming widely deployed. However, more cores consume more power. A power saving 
technique for multi-core systems based on the observation of critical sections is proposed. Since only one thread 
works in a critical section, other threads on other cores that access the same resource would be busy waiting. The 
proposed power-saving technique leads to the energy savings (11 to 15 percent) and the lowest values of Energy 
Delay Product as compared with the other power-saving techniques. 
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1. Introduction 

The significant advances of VLSI technology lead to 
multi-cores on a physical chip nowadays. With the 
decreasing prices, multi-core processors are widely 
deployed in both server and desktop systems. The 
performance of multi-threaded applications could be 
improved on multi-core based systems because the 
workload of threads could be dispatched to cores, which 
work in parallel. 

More cores imply more power consumption. [1] 
Though power-saving technique is important to reduce 
energy wastages of processors, the performance of 
applications should be maintained when power-saving 
techniques are applied. Therefore, to find a technique to 
save power and keep the performance of applications is 
an important issue with the use of multi-core processors. 

The most adopted power saving technique for 
current multi-core processors is the ability of dynamic 
frequency tuning which is based on Dynamic Voltage 
and Frequency Scaling (DVFS). Many studies use 
DVFS to adjust the frequency of processor cores, and 
then, to save power. [2] These researches could be 
classified into two groups: profiling and performance 
monitors. 

The power-saving techniques of profiling rely on the 
measurement of the behaviors of applications first, and 
then, analyze the measured results and find an approach 
to tune the frequency of processors. However, the 
profiling techniques require extra costs, such as code 
analysis and special instructions inserted into the target 
applications. Due to the significant overhead of extra 
costs, the profiling power-saving techniques are not 
applied widely. [8] [9] 
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The frequency of multi-core processors could be 
tuned according to the information collected by the 
hardware performance monitors (PMs). The particular 
behavior of applications, such as CPU usages, could be 
observed by PMs in run-time. Based on the observations 
of PMs, the phases of applications could be determined, 
and then the frequency of processor cores could be 
tuned to save power without significant overhead. [5] [6] 

The power-saving techniques based on PMs are 
simple and effective, thus they have been already 
applied on various systems, such as power governors of 
Linux. One drawback of PMs is that phases are 
identified after their information is collected by PMs. 
The information is always one step behind. Thus the 
phases of applications cannot be determined by PMs 
precisely. The inaccurate engage/disengage timing of 
phases could lead to inappropriate CPU frequency 
tuning, and result in the degradation of system 
performance and energy wastages. 

In order to improve the limits of profiling and PMs 
power-saving techniques, we propose an approach that 
takes critical sections as targets to reduce the power 
consumption of multi-threaded applications. Threads 
use critical sections to synchronize the access of shared 
resources. A thread enters a critical section for 
accessing a shared resource exclusively. It is worth 
noting that only one thread, hence one core, can work in 
a critical section, and other cores are busy waiting, if 
they are to access the same resource. Thus critical 
sections could be considered as a special phase of multi-
threaded applications. Moreover, due to the busy 
waiting cores could lead to energy wastages, critical 
sections could be a power-saving points of multi-
threaded applications. 

In order to exploit the power-saving potential of 
critical sections, our motivation is to develop a power-
saving technique based on the detections of critical 
sections using the run-time information of a Java virtual 
machine (JVM). In Java, [3] all instructions of 
applications have to be interpreted by a JVM. The 
behavior of an application could be observed precisely 
with very little overhead in run-time, including critical 
sections.  

Furthermore, the use of run-time information of a 
JVM can improve the disadvantages of profiling and 
PM power-saving techniques. First, the run-time 
information is readily available to a JVM, the extra cost 
of profiling could be reduced. Secondly, due to phases 

of applications could be detected precisely by the run-
time information of a JVM, the disadvantages of 
ambiguous phase determinations of PM power-saving 
techniques could be also improved. [10] 

The research steps of this study are performed as 
follows. Firstly, the behaviors of critical sections in Java 
are studied. Secondly, the technique of critical section 
detection is developed by the run-time information 
which is readily available in a JVM. Thirdly, the power-
saving technique of critical sections is proposed. Finally, 
the proposed approach is compared with other power-
saving schemes to demonstrate its performance. 

The experimental results show that power-saving 
techniques of critical sections leads to significant energy 
reductions (11 to 15 percent) with the multi-threaded 
Java benchmarks, which is better than the other power-
saving techniques (6 to 9 percent). Moreover, the 
performance degradation of power-saving techniques of 
critical sections is only one percent, which is much 
better than the use of other power-saving techniques (7 
to 12 percent). As a result, the power-saving technique 
of critical sections can lead to the lowest values of 
Energy Delay Product (EDP) among the other power-
saving techniques without additional costs. A 
preliminary version of this paper is published. [7] As 
compared with, [7] we enhance the detection of critical 
section detections to bytecode levels, and introduce 
more power-saving opportunity with new power-saving 
algorithms. 
The organization of the research is as follows. Section 2 
describes the opportunity of power saving in critical 
sections. The synchronization methods of Java are 
described in Section 3, with the proposed approach of 
critical section detections. The proposed power saving 
algorithm is shown in Section 4. The experiment set up 
and experimental results are shown in Section 5, 
followed by the conclusion in Section 6. 
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1: public int Test() { 
2: synchronized(this) { 
3:  try { 
4:   //do something 
5:  } catch (Exception e) { 
6:   //without releasing lock explicitly 
7:   return -1;  
8: } 
9:  } 
10:  return 0;  
11: } 

2. The power-saving opportunity of critical 
sections 

When a shared resource is accessed by a thread 
exclusively, the particular period could be considered as 
in a critical section. No matter how many processor 
cores are available, if the threads on all cores want to 
enter the same critical section simultaneously, only one 
core can work and other cores are busy waiting. This 
observation leads the power-saving opportunity as 
follows: the frequency of the cores that are busy waiting 
could be minimized to reduce energy wastages. As a 
comparision, we consider a single core case first and 
assume all threads execute round robin as shown in 
Figure 1. Due to the time sharing between threads, the 
critical sections would not lead to the purely busy 
waiting status.  

 

Figure 1.  Critical section in the configuration of a 
single core. 

On the other hand, the power-saving opportunity of 
critical sections could be observed with the use of multi-
core processors with multi-threaded applications. 
Consider an extra case in Figure 2, a multi-threaded 
application (thread 1 to 4) is executed in parallel and all 
threads want to enter the critical section for accessing 
the same resource at the same time, and only thread 1 
succeeds. The other threads (thread 2, 3 and 4) become 
busy waiting on thread 1 to exit the critical section. 
After thread 1 exits critical section, thread 2 enters 
critical section and access the same resource. That 
shows only a thread is executing in a critical section 
among the threads which access the same shared 
resource.  

This observation shows in a critical section, the busy 
waiting cores could be tuned to save power without 
performance degradations. For example, in Figure 2, the 
frequency of busy waiting cores (core 2, 3 and 4) can be 
minimized to reduce the energy wastages. Moreover, 

the performance of applications would be maintained 
because only busy waiting cores are tuned. 

 

Figure 2.  Power-saving opportunity of multi-core 
processors. 

3. The synchronization methods of Java 

The scoped lock is widely used as a synchronization 
mechanism to guarantee the atomic access of shared 
resources. The scoped lock could be considered as the 
automatic lock obtaining and releasing mechanism. In 
Java, a scoped lock is declared by the use of the 
keyword, synchronized. In the sample code, shown in 
Figure 3, the method Test() is declared as synchronized 
in line 2. With this declaration, the Test() method can be 
guaranteed its atomic access. 

 
Figure 3. The sample code of scoped locks in Java 
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Java synchronization methods not only guarantee the 
atomic access of shared resources, but also lead to the 
critical sections, which are the power-saving points of 
multi-threaded applications. As all instructions 
(bytecodes) of Java applications have to be interpreted 
by the Java interpreter, the synchronization codes can be 
observed before they are executed. Therefore, the 
critical sections can be detected in advance to exploit 
the power-saving opportunity. 

Since critical sections are the power-saving point of 
multi-threaded applications which are executed on 
multi-core systems, the development of critical sections 
detection is important. The critical section detection is 
based on the use of synchronized keyword and Java 
bytecode interpreter. 

 
Figure 4. The structure of Java virtual machines 

 
The bytecode interpreter is an important software 

component of a JVM, whose structure is in Figure 4. In 
order to reach platform independency, Java applications 
are compiled to the class files with bytecodes, the 
special instruction set of Java. All instructions of Java 
applications have to be simulated by the bytecode 
interpreter. Hence, the particular bytecode patterns 
could be identified before they are actually fired on 
hardware.  

The keyword, synchronized, would be compiled to 
the particular bytecode patterns. Moreover, critical 
sections would be generated by these particular known 
bytecode patterns in run-time. Thus critical sections 
could be identified in advance before they are actually 
executed on hardware by ehancing the interpreter to 
match the patterns. In Java, the use of synchronized 
keyword would be compiled to two bytecode patterns 
for Java objects and methods. The bytecode pattern of 
synchronized Java objects is explained first. A piece of 
sample code with the use of synchronized keyword for 

Java objects and its compiled bytecodes are shown in 
Figure 5 and Figure 6. 

 
 

 

Figure 5. The sample code of synchronized 
objects 

 
As shown in Figure 5, the use of synchronized 

keyword would guarantee the atomic access of the 
shared resource, Object, in line 3. That means a critical 
section of this shared resource would be generated in 
run-time. In order to create a critical section for this 
synchronized object, the line 3 in Figure 4 would be 
compiled to the particular pattern of a pair of bytecodes, 
monitorenter and monitorexit, as shown as line 6, 11 
and 15 in Figure 6. 

 

Figure 6. The bytecodes of synchronized objects 
 
When the monitorenter bytecode is translated by the 

interpreter, a lock would be acquired atomically for this 
synchronized object. Thus the monitorenter bytecode 

1: new  #2; //class Object 
2: dup 
3: invokespecial#1; //Method java/lang/Object."":()V 
4: dup 
5: astore_1 
6: monitorenter 
7: iconst_0 
8: istore_2 
9: nop 
10: aload_1 
11: monitorexit 
12: goto 23 
13: astore_3 
14: aload_1 
15: monitorexit 
16: aload_3 
17: athrow 
18: nop 
19: return  

1: public class test { 
2:  public static void main(String[] args) { 
3:   synchronized(new Object()){ 
4:    int i = 0; 
5:   } 
6:  } 
7: } 
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could be used to indicate the start of a critical section. 
The lock would be released by two monitorexit 
bytecodes. They could be used to indicate two possible 
ends of this critical section. The possibility of two ends 
of this critical section is due to the exception handling 
of Java. Based on the observation of this particular 
bytecode pattern, a pair of monitorenter and monitorexit, 
the critical section of  a Java object can be detected 
before it is executed on hardware. 

On the other hand, a Java method could be accessed 
by multiple threads, thus the atomic access of Java 
methods is important in multi-threaded applications. 
The bytecode pattern of synchronized Java methods is 
different from Java objects. In order to use this pattern, 
a piece of sample code with the use of synchronized 
keyword for Java methods is shown in Figure 7. 

 

 
Figure 7. The sample code of synchronized 

methods 

 
As shown in Figure 7, the use of synchronized 

keyword guarantees the atomic access of Java method, 
sell, in line 3. That means a critical section would be 
generated when this method is accessed in the run-time. 
In order to notify the JVM to create a critical section for 
this synchronized method, this method would be 
compiled with a special value, ACC_SYCHRONIZED, 
for its property flag. This property flag would be 
checked by a JVM when this method is invoked. 

When a synchronized method is invoked, a monitor 
would be acquired by the current thread to guarantee the 
atomic access of this synchronized method 
automatically. This monitor would be released whether 
this method invocation completes normally or abruptly. 
When the executing thread owns the monitor, other 
threads cannot acquire it. Thus the atomic accesses of 
synchronized Java methods could be reached. 

Based on the study of synchronized bytecode 
patterns, the pair of monitorenter/monitorexit and 

property flag, ACC_SYNCHRONIZED, critical 
sections could be identified by a bytecode interpreter. 
Thus the algorithm of detection of critical sections is 
proposed as follows. As shown in Algorithm 1, a critical 
section could be detected by recognitions of the two-
bytecode pattern. Thus the accurate engage/disengage 
timing of a critical section could be identified. With the 
accurate timing information of a critical section, the 
frequency of busy waiting processor cores could be 
adjusted in advance, and then the power-saving 
opportunity of critical sections can be exploited. 

 

 
Secondly, the proposed critical section detection 

algorithm also improves the two disadvantages of the 
PM power-saving approach. First, application’s phases 
must be identified after the information appears in PMs. 
It is always one step behind. Secondly, the actual 
engage/disengage time of a given phase is not known. 
These disadvantages are due to the nature of using PMs 
which are at the lower level of a computer system. 
Conversely, the proposed critical section detection uses 
the run-time information which is from higher levels 
(e.g. bytecode patterns), thus these limitations can be 
improved. 
Since the power-saving point, critical sections, can be 
detected before they are actually executed on hardware, 
the busy waiting periods of processor cores can be 
identified. Thus the energy wastages of busy waiting 
periods could be reduced by CPU frequency tuning. 
 

1: class Company{ 
2:  private int sale = 0; 
3:  synchronized public void sell(int qty){ 
4:   int sum = sale; 
5:   sum += qty; 
6:   sale = sum;  
7:  } 
8: } 
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4. Power-saving algorithms of critical sections 

 
Based on the critical section detections, the accurate 

engage/disengage timing of a critical section could be 
determined. Thus the frequency of busy waiting 
processor cores could be minimized to save power. The 
power-saving algorithm of critical section (CS) 
detections is shown as follows. 

 

 
In algorithm 2, the CSstart and CSend can be 
determined by the bytecode patterns in the run-time. 
Thus the power level of busy waiting cores could be 
adjusted based on the precise engage/disengage timing 
of critical sections. Due to the accurate timing, the 
frequency can be adjusted correctly, and then reduce 
more energy wastages than the use of PMs. Moreover, 
because critical sections can be detected in  run-time, 
this power-saving algorithm works without the extra 
costs of profiling. 

5. Experiments and evaluations 

 
The experiment platform is has a four-core 

processor, Intel Q6600 Quad-Core CPU. The 
frequencies of each core can be adjusted independently 
from 1.8 to 2.93 GHz. The operating system is Fedora 
Core 8 with kernel version 2.6.24. The experiments use 
the HotSpot of OpenJDK. The latest version, OpenJDK 
1.7, is built for experiments. 

Five widely used multi-threaded Java benchmarks 
are used in this study. They are Eclipse, Hsqldb, 
Lusearch and Xalan from Dacapo, and SPECjbb2005. 
These multi-threaded benchmarks are of different types 
of workloads, and they could represent the common 
features of general applications. 

For Example, Hsqldb executes a number of 
transactions against a model of a banking application 
via a JDBCbench-like in memory. The text searching 
and XML transformation of Lusearch and Xalan are 
usually seen in text editors and browsers. The 
SPECjbb2005 processes the complete business logic 
with multiple warehouses. Based on experiments of 
these benchmarks, the performance and power 
consumption of multi-threaded applications could be 
observed and compared 

In order to compare the proposed power-saving 
algorithms with other power-saving approaches, four 
different power schemes are used to compare in this 
experiment. First, two static CPU frequencies are used 
as the control group, the maximum and minimum CPU 
frequencies. They are mapped to the performance and 
power-saving governors in Linux. Secondly, two widely 
used Linux power-saving governors, conservative and 
ondaemon, are used as PM power-saving approaches. 
The ondaemon governor changes CPU frequency based 
on processor usages as the events of performance 
monitors. On the other hand, the conservative governor 
can be considered as a more gradual on-demand.  

To evaluate the power consumption of these 
benchmarks, the measurement of CPU power 
consumption is an important issue. A generic dynamic 
power measurement of CMOS circuits is used in these 
experiments. The dynamic power consumption of 
processors can be expressed as follows. 

 
In Equation 1, C is the effective switching 

capacitance, Vdd is the supply voltage and f is the 
executing frequency. It is worth noting that the 
observation of lower power consumption might not lead 
to better power efficiency. In general, the worst 
performance of applications usually could be observed 
while the lowest processor frequency is applied. The 
worst performance usually leads to the longest 
execution time, and then results in significant power 
consumptions. The performance of power-saving 
techniques cannot be evaluated appropriately only by 
the values of power consumption. 

To evaluate the performance of power-saving 
schemes appropriately, the executing time and power 
consumption of benchmark applications should be 
considered at the same time. Therefore, EDP is used as 
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a comprehensive measurement in experiments. The 
value of EDP is the product of energy and execution 
time of applications. The lower value of EDP usually 
indicates the better performance of power-saving 
techniques. With the use of EDP, the power 
consumption and execution time of benchmarks could 
be estimated at the same time and the performance of 
different power-saving techniques could be evaluated 
appropriately. 

The power consumption is shown in Figure 8. In the 
worst performance of benchmarks, the use of minimum 
CPU frequency leads to the significant power 
consumption among all benchmarks. On the other hand 
conservative and ondaemon lead to slight reductions of 
power consumption (6 to 9 percent). It is worth noting 
that the proposed power-saving technique leads 
significant reductions of energy (11 to 15 percent), 
which is better than the use of conservative and 
ondaemon. This observation shows that the proposed 
power-saving algorithm not only keeps benchmark’s 
performance well, but also reduces energy wastages 
significantly. 

Figure 8. The Power consumption of power-
saving techniques 

 
Finally, the EDP values are shown in Figure 9. The 

lowest EDP values (82 percent) could be observed with 
the use of proposed power-saving technique. On the 
other hand, the EDP values of conservative (94 percent) 
and ondaemon approaches (96 percent) are higher than 
the proposed approach. Based on the comparison of the 
EDP values, the performance of the proposed approach 
is better than other power-saving approaches. 

 

 
Figure 9. The EDP values of power-saving 

techniques 

 
According to these experimental results, three 

advantages of the proposed approach could be 
concluded. First, while other approaches suffer from 
performance degradation, the proposed approach keeps 
the performance of benchmarks well. Secondly, 
significant energy wastage could be reduced by the 
proposed approach, which is better than the use of other 
power-saving approaches. Finally, the lowest EDP 
values indicate that the comprehensive performance of 
the proposed power-saving techniques. Thus the goals 
of this study, power-saving and very little performance 
degradation, are reached. 

 

6. Conclusion 

In this research, the power-saving opportunity, 
critical sections of multi-threaded applications, is 
studied. Due to atomic accesses of the shared resource, 
only one processor core can work in a critical section, if 
all the threads on cores are to access the same shared 
resource, while other processor cores are busy waiting. 
These busy waiting cores do not improve system 
performance, but waste energy. We propose the 
approach to identify such critical sections in advance 
and hence to reduce the energy wastages by tuning the 
busy waiting cores into the lowest frequency.  

The proposed approach with other related 
approaches are implemented on Hotspot. Five widely 
used multi-threaded Java benchmarks are used to 
evaluate the performance of power-saving techniques. 
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The experimental results show that the proposed 
approach leads to well performance maintenance, 
significant reductions of energy wastes and the lowest 
EDP values among other power-saving approaches. 
These experimental results demonstrate the 
effectiveness of proposed power-saving technique, and 
show its better performance among the other power-
saving approaches. 
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