

The Smart Energy Management of Multithreaded Java Applications on Multi-Core Processors

Kuo-Yi Chen
Department of Computer Science and Information Engineering,

National Formosa University,
Taiwan, R. O. C.

E-mail:kuoyichen@gmail.com

Fuh-Gwo Chen
(*Corresponding author)

 Department of Computer Science and Information Management,
Hung Kuang University,

Taichung, Taiwan
E-mail: fgchen@gmail.com

Multi-core processors are becoming widely deployed. However, more cores consume more power. A power saving
technique for multi-core systems based on the observation of critical sections is proposed. Since only one thread
works in a critical section, other threads on other cores that access the same resource would be busy waiting. The
proposed power-saving technique leads to the energy savings (11 to 15 percent) and the lowest values of Energy
Delay Product as compared with the other power-saving techniques.

Keywords: Power-saving, Java, Synchronization, Multi-core processors, Multi-threaded applications, JVM

1. Introduction

The significant advances of VLSI technology lead to
multi-cores on a physical chip nowadays. With the
decreasing prices, multi-core processors are widely
deployed in both server and desktop systems. The
performance of multi-threaded applications could be
improved on multi-core based systems because the
workload of threads could be dispatched to cores, which
work in parallel.

More cores imply more power consumption. [1]
Though power-saving technique is important to reduce
energy wastages of processors, the performance of
applications should be maintained when power-saving
techniques are applied. Therefore, to find a technique to
save power and keep the performance of applications is
an important issue with the use of multi-core processors.

The most adopted power saving technique for
current multi-core processors is the ability of dynamic
frequency tuning which is based on Dynamic Voltage
and Frequency Scaling (DVFS). Many studies use
DVFS to adjust the frequency of processor cores, and
then, to save power. [2] These researches could be
classified into two groups: profiling and performance
monitors.

The power-saving techniques of profiling rely on the
measurement of the behaviors of applications first, and
then, analyze the measured results and find an approach
to tune the frequency of processors. However, the
profiling techniques require extra costs, such as code
analysis and special instructions inserted into the target
applications. Due to the significant overhead of extra
costs, the profiling power-saving techniques are not
applied widely. [8] [9]

International Journal of Networked and Distributed Computing, Vol. 1, No. 1 (January 2013), 53-60

Published by Atlantis Press
 Copyright: the authors
 53

Administrateur
Texte tapé à la machine
Received 21 March 2012

Administrateur
Texte tapé à la machine
Accepted 12 July 2012

Administrateur
Texte tapé à la machine

Administrateur
Texte tapé à la machine

Kuo-Yi Chen and Fuh-Gwo Chen

The frequency of multi-core processors could be
tuned according to the information collected by the
hardware performance monitors (PMs). The particular
behavior of applications, such as CPU usages, could be
observed by PMs in run-time. Based on the observations
of PMs, the phases of applications could be determined,
and then the frequency of processor cores could be
tuned to save power without significant overhead. [5] [6]

The power-saving techniques based on PMs are
simple and effective, thus they have been already
applied on various systems, such as power governors of
Linux. One drawback of PMs is that phases are
identified after their information is collected by PMs.
The information is always one step behind. Thus the
phases of applications cannot be determined by PMs
precisely. The inaccurate engage/disengage timing of
phases could lead to inappropriate CPU frequency
tuning, and result in the degradation of system
performance and energy wastages.

In order to improve the limits of profiling and PMs
power-saving techniques, we propose an approach that
takes critical sections as targets to reduce the power
consumption of multi-threaded applications. Threads
use critical sections to synchronize the access of shared
resources. A thread enters a critical section for
accessing a shared resource exclusively. It is worth
noting that only one thread, hence one core, can work in
a critical section, and other cores are busy waiting, if
they are to access the same resource. Thus critical
sections could be considered as a special phase of multi-
threaded applications. Moreover, due to the busy
waiting cores could lead to energy wastages, critical
sections could be a power-saving points of multi-
threaded applications.

In order to exploit the power-saving potential of
critical sections, our motivation is to develop a power-
saving technique based on the detections of critical
sections using the run-time information of a Java virtual
machine (JVM). In Java, [3] all instructions of
applications have to be interpreted by a JVM. The
behavior of an application could be observed precisely
with very little overhead in run-time, including critical
sections.

Furthermore, the use of run-time information of a
JVM can improve the disadvantages of profiling and
PM power-saving techniques. First, the run-time
information is readily available to a JVM, the extra cost
of profiling could be reduced. Secondly, due to phases

of applications could be detected precisely by the run-
time information of a JVM, the disadvantages of
ambiguous phase determinations of PM power-saving
techniques could be also improved. [10]

The research steps of this study are performed as
follows. Firstly, the behaviors of critical sections in Java
are studied. Secondly, the technique of critical section
detection is developed by the run-time information
which is readily available in a JVM. Thirdly, the power-
saving technique of critical sections is proposed. Finally,
the proposed approach is compared with other power-
saving schemes to demonstrate its performance.

The experimental results show that power-saving
techniques of critical sections leads to significant energy
reductions (11 to 15 percent) with the multi-threaded
Java benchmarks, which is better than the other power-
saving techniques (6 to 9 percent). Moreover, the
performance degradation of power-saving techniques of
critical sections is only one percent, which is much
better than the use of other power-saving techniques (7
to 12 percent). As a result, the power-saving technique
of critical sections can lead to the lowest values of
Energy Delay Product (EDP) among the other power-
saving techniques without additional costs. A
preliminary version of this paper is published. [7] As
compared with, [7] we enhance the detection of critical
section detections to bytecode levels, and introduce
more power-saving opportunity with new power-saving
algorithms.
The organization of the research is as follows. Section 2
describes the opportunity of power saving in critical
sections. The synchronization methods of Java are
described in Section 3, with the proposed approach of
critical section detections. The proposed power saving
algorithm is shown in Section 4. The experiment set up
and experimental results are shown in Section 5,
followed by the conclusion in Section 6.

Published by Atlantis Press
 Copyright: the authors
 54

 The Smart Energy Management of Java Applications

1: public int Test() {
2: synchronized(this) {
3: try {
4: //do something
5: } catch (Exception e) {
6: //without releasing lock explicitly
7: return -1;
8: }
9: }
10: return 0;
11: }

2. The power-saving opportunity of critical
sections

When a shared resource is accessed by a thread
exclusively, the particular period could be considered as
in a critical section. No matter how many processor
cores are available, if the threads on all cores want to
enter the same critical section simultaneously, only one
core can work and other cores are busy waiting. This
observation leads the power-saving opportunity as
follows: the frequency of the cores that are busy waiting
could be minimized to reduce energy wastages. As a
comparision, we consider a single core case first and
assume all threads execute round robin as shown in
Figure 1. Due to the time sharing between threads, the
critical sections would not lead to the purely busy
waiting status.

Figure 1. Critical section in the configuration of a
single core.

On the other hand, the power-saving opportunity of
critical sections could be observed with the use of multi-
core processors with multi-threaded applications.
Consider an extra case in Figure 2, a multi-threaded
application (thread 1 to 4) is executed in parallel and all
threads want to enter the critical section for accessing
the same resource at the same time, and only thread 1
succeeds. The other threads (thread 2, 3 and 4) become
busy waiting on thread 1 to exit the critical section.
After thread 1 exits critical section, thread 2 enters
critical section and access the same resource. That
shows only a thread is executing in a critical section
among the threads which access the same shared
resource.

This observation shows in a critical section, the busy
waiting cores could be tuned to save power without
performance degradations. For example, in Figure 2, the
frequency of busy waiting cores (core 2, 3 and 4) can be
minimized to reduce the energy wastages. Moreover,

the performance of applications would be maintained
because only busy waiting cores are tuned.

Figure 2. Power-saving opportunity of multi-core
processors.

3. The synchronization methods of Java

The scoped lock is widely used as a synchronization
mechanism to guarantee the atomic access of shared
resources. The scoped lock could be considered as the
automatic lock obtaining and releasing mechanism. In
Java, a scoped lock is declared by the use of the
keyword, synchronized. In the sample code, shown in
Figure 3, the method Test() is declared as synchronized
in line 2. With this declaration, the Test() method can be
guaranteed its atomic access.

Figure 3. The sample code of scoped locks in Java

Core 1

Core 2

Core 3

Core 4

Executing Executing

Executing
Busy

waiting Executing

Executing

Executing

Time

Threads are executed simultaneously

Critical section

(Thread 1) (Thread 1) (Thread 1)

(Thread 2) (Thread 2) (Thread 2)

(Thread 3) (Thread 3) (Thread 3)

(Thread 4) (Thread 4) (Thread 4)

Busy
waiting

Busy
waiting

Critical section

Executing

Busy
waiting

Busy
waiting

Core 1 Executing Executing Executing

Time

Threads are executed sequentially

Critical section

(Thread 2)(Thread 1) (Thread 1)

Published by Atlantis Press
 Copyright: the authors
 55

Kuo-Yi Chen and Fuh-Gwo Chen

Java synchronization methods not only guarantee the
atomic access of shared resources, but also lead to the
critical sections, which are the power-saving points of
multi-threaded applications. As all instructions
(bytecodes) of Java applications have to be interpreted
by the Java interpreter, the synchronization codes can be
observed before they are executed. Therefore, the
critical sections can be detected in advance to exploit
the power-saving opportunity.

Since critical sections are the power-saving point of
multi-threaded applications which are executed on
multi-core systems, the development of critical sections
detection is important. The critical section detection is
based on the use of synchronized keyword and Java
bytecode interpreter.

Figure 4. The structure of Java virtual machines

The bytecode interpreter is an important software

component of a JVM, whose structure is in Figure 4. In
order to reach platform independency, Java applications
are compiled to the class files with bytecodes, the
special instruction set of Java. All instructions of Java
applications have to be simulated by the bytecode
interpreter. Hence, the particular bytecode patterns
could be identified before they are actually fired on
hardware.

The keyword, synchronized, would be compiled to
the particular bytecode patterns. Moreover, critical
sections would be generated by these particular known
bytecode patterns in run-time. Thus critical sections
could be identified in advance before they are actually
executed on hardware by ehancing the interpreter to
match the patterns. In Java, the use of synchronized
keyword would be compiled to two bytecode patterns
for Java objects and methods. The bytecode pattern of
synchronized Java objects is explained first. A piece of
sample code with the use of synchronized keyword for

Java objects and its compiled bytecodes are shown in
Figure 5 and Figure 6.

Figure 5. The sample code of synchronized
objects

As shown in Figure 5, the use of synchronized

keyword would guarantee the atomic access of the
shared resource, Object, in line 3. That means a critical
section of this shared resource would be generated in
run-time. In order to create a critical section for this
synchronized object, the line 3 in Figure 4 would be
compiled to the particular pattern of a pair of bytecodes,
monitorenter and monitorexit, as shown as line 6, 11
and 15 in Figure 6.

Figure 6. The bytecodes of synchronized objects

When the monitorenter bytecode is translated by the

interpreter, a lock would be acquired atomically for this
synchronized object. Thus the monitorenter bytecode

1: new #2; //class Object
2: dup
3: invokespecial#1; //Method java/lang/Object."":()V
4: dup
5: astore_1
6: monitorenter
7: iconst_0
8: istore_2
9: nop
10: aload_1
11: monitorexit
12: goto 23
13: astore_3
14: aload_1
15: monitorexit
16: aload_3
17: athrow
18: nop
19: return

1: public class test {
2: public static void main(String[] args) {
3: synchronized(new Object()){
4: int i = 0;
5: }
6: }
7: }

Published by Atlantis Press
 Copyright: the authors
 56

 The Smart Energy Management of Java Applications

could be used to indicate the start of a critical section.
The lock would be released by two monitorexit
bytecodes. They could be used to indicate two possible
ends of this critical section. The possibility of two ends
of this critical section is due to the exception handling
of Java. Based on the observation of this particular
bytecode pattern, a pair of monitorenter and monitorexit,
the critical section of a Java object can be detected
before it is executed on hardware.

On the other hand, a Java method could be accessed
by multiple threads, thus the atomic access of Java
methods is important in multi-threaded applications.
The bytecode pattern of synchronized Java methods is
different from Java objects. In order to use this pattern,
a piece of sample code with the use of synchronized
keyword for Java methods is shown in Figure 7.

Figure 7. The sample code of synchronized

methods

As shown in Figure 7, the use of synchronized

keyword guarantees the atomic access of Java method,
sell, in line 3. That means a critical section would be
generated when this method is accessed in the run-time.
In order to notify the JVM to create a critical section for
this synchronized method, this method would be
compiled with a special value, ACC_SYCHRONIZED,
for its property flag. This property flag would be
checked by a JVM when this method is invoked.

When a synchronized method is invoked, a monitor
would be acquired by the current thread to guarantee the
atomic access of this synchronized method
automatically. This monitor would be released whether
this method invocation completes normally or abruptly.
When the executing thread owns the monitor, other
threads cannot acquire it. Thus the atomic accesses of
synchronized Java methods could be reached.

Based on the study of synchronized bytecode
patterns, the pair of monitorenter/monitorexit and

property flag, ACC_SYNCHRONIZED, critical
sections could be identified by a bytecode interpreter.
Thus the algorithm of detection of critical sections is
proposed as follows. As shown in Algorithm 1, a critical
section could be detected by recognitions of the two-
bytecode pattern. Thus the accurate engage/disengage
timing of a critical section could be identified. With the
accurate timing information of a critical section, the
frequency of busy waiting processor cores could be
adjusted in advance, and then the power-saving
opportunity of critical sections can be exploited.

Secondly, the proposed critical section detection

algorithm also improves the two disadvantages of the
PM power-saving approach. First, application’s phases
must be identified after the information appears in PMs.
It is always one step behind. Secondly, the actual
engage/disengage time of a given phase is not known.
These disadvantages are due to the nature of using PMs
which are at the lower level of a computer system.
Conversely, the proposed critical section detection uses
the run-time information which is from higher levels
(e.g. bytecode patterns), thus these limitations can be
improved.
Since the power-saving point, critical sections, can be
detected before they are actually executed on hardware,
the busy waiting periods of processor cores can be
identified. Thus the energy wastages of busy waiting
periods could be reduced by CPU frequency tuning.

1: class Company{
2: private int sale = 0;
3: synchronized public void sell(int qty){
4: int sum = sale;
5: sum += qty;
6: sale = sum;
7: }
8: }

Published by Atlantis Press
 Copyright: the authors
 57

Kuo-Yi Chen and Fuh-Gwo Chen

4. Power-saving algorithms of critical sections

Based on the critical section detections, the accurate

engage/disengage timing of a critical section could be
determined. Thus the frequency of busy waiting
processor cores could be minimized to save power. The
power-saving algorithm of critical section (CS)
detections is shown as follows.

In algorithm 2, the CSstart and CSend can be
determined by the bytecode patterns in the run-time.
Thus the power level of busy waiting cores could be
adjusted based on the precise engage/disengage timing
of critical sections. Due to the accurate timing, the
frequency can be adjusted correctly, and then reduce
more energy wastages than the use of PMs. Moreover,
because critical sections can be detected in run-time,
this power-saving algorithm works without the extra
costs of profiling.

5. Experiments and evaluations

The experiment platform is has a four-core

processor, Intel Q6600 Quad-Core CPU. The
frequencies of each core can be adjusted independently
from 1.8 to 2.93 GHz. The operating system is Fedora
Core 8 with kernel version 2.6.24. The experiments use
the HotSpot of OpenJDK. The latest version, OpenJDK
1.7, is built for experiments.

Five widely used multi-threaded Java benchmarks
are used in this study. They are Eclipse, Hsqldb,
Lusearch and Xalan from Dacapo, and SPECjbb2005.
These multi-threaded benchmarks are of different types
of workloads, and they could represent the common
features of general applications.

For Example, Hsqldb executes a number of
transactions against a model of a banking application
via a JDBCbench-like in memory. The text searching
and XML transformation of Lusearch and Xalan are
usually seen in text editors and browsers. The
SPECjbb2005 processes the complete business logic
with multiple warehouses. Based on experiments of
these benchmarks, the performance and power
consumption of multi-threaded applications could be
observed and compared

In order to compare the proposed power-saving
algorithms with other power-saving approaches, four
different power schemes are used to compare in this
experiment. First, two static CPU frequencies are used
as the control group, the maximum and minimum CPU
frequencies. They are mapped to the performance and
power-saving governors in Linux. Secondly, two widely
used Linux power-saving governors, conservative and
ondaemon, are used as PM power-saving approaches.
The ondaemon governor changes CPU frequency based
on processor usages as the events of performance
monitors. On the other hand, the conservative governor
can be considered as a more gradual on-demand.

To evaluate the power consumption of these
benchmarks, the measurement of CPU power
consumption is an important issue. A generic dynamic
power measurement of CMOS circuits is used in these
experiments. The dynamic power consumption of
processors can be expressed as follows.

In Equation 1, C is the effective switching

capacitance, Vdd is the supply voltage and f is the
executing frequency. It is worth noting that the
observation of lower power consumption might not lead
to better power efficiency. In general, the worst
performance of applications usually could be observed
while the lowest processor frequency is applied. The
worst performance usually leads to the longest
execution time, and then results in significant power
consumptions. The performance of power-saving
techniques cannot be evaluated appropriately only by
the values of power consumption.

To evaluate the performance of power-saving
schemes appropriately, the executing time and power
consumption of benchmark applications should be
considered at the same time. Therefore, EDP is used as

Published by Atlantis Press
 Copyright: the authors
 58

 The Smart Energy Management of Java Applications

a comprehensive measurement in experiments. The
value of EDP is the product of energy and execution
time of applications. The lower value of EDP usually
indicates the better performance of power-saving
techniques. With the use of EDP, the power
consumption and execution time of benchmarks could
be estimated at the same time and the performance of
different power-saving techniques could be evaluated
appropriately.

The power consumption is shown in Figure 8. In the
worst performance of benchmarks, the use of minimum
CPU frequency leads to the significant power
consumption among all benchmarks. On the other hand
conservative and ondaemon lead to slight reductions of
power consumption (6 to 9 percent). It is worth noting
that the proposed power-saving technique leads
significant reductions of energy (11 to 15 percent),
which is better than the use of conservative and
ondaemon. This observation shows that the proposed
power-saving algorithm not only keeps benchmark’s
performance well, but also reduces energy wastages
significantly.

Figure 8. The Power consumption of power-
saving techniques

Finally, the EDP values are shown in Figure 9. The

lowest EDP values (82 percent) could be observed with
the use of proposed power-saving technique. On the
other hand, the EDP values of conservative (94 percent)
and ondaemon approaches (96 percent) are higher than
the proposed approach. Based on the comparison of the
EDP values, the performance of the proposed approach
is better than other power-saving approaches.

Figure 9. The EDP values of power-saving

techniques

According to these experimental results, three

advantages of the proposed approach could be
concluded. First, while other approaches suffer from
performance degradation, the proposed approach keeps
the performance of benchmarks well. Secondly,
significant energy wastage could be reduced by the
proposed approach, which is better than the use of other
power-saving approaches. Finally, the lowest EDP
values indicate that the comprehensive performance of
the proposed power-saving techniques. Thus the goals
of this study, power-saving and very little performance
degradation, are reached.

6. Conclusion

In this research, the power-saving opportunity,
critical sections of multi-threaded applications, is
studied. Due to atomic accesses of the shared resource,
only one processor core can work in a critical section, if
all the threads on cores are to access the same shared
resource, while other processor cores are busy waiting.
These busy waiting cores do not improve system
performance, but waste energy. We propose the
approach to identify such critical sections in advance
and hence to reduce the energy wastages by tuning the
busy waiting cores into the lowest frequency.

The proposed approach with other related
approaches are implemented on Hotspot. Five widely
used multi-threaded Java benchmarks are used to
evaluate the performance of power-saving techniques.

Eclipse Hsqldb Lusearch Xalan SPECjbb2005
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

P
ow

er
 c

o
ns

um
pt

io
n

(N
o

rm
a

liz
e

d)

Multithreaded Benchmarks

 Maximum CPU Frequency
 Minimum CPU Frequency
 Power-saving with critical regions
 Conservative governor
 Ondaemon governor

Eclipse Hsqldb Lusearch Xalan SPECjbb2005
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

E
ne

rg
y

D
e

la
y

P
ro

du
ct

 V
al

u
es

 (
N

o
rm

a
liz

e
d)

Multithreaded Benchmarks

 Maximum CPU Frequency
 Minimum CPU Frequency
 Power-saving with critical regions
 Conservative governor
 Ondaemon governor

Published by Atlantis Press
 Copyright: the authors
 59

Kuo-Yi Chen and Fuh-Gwo Chen

The experimental results show that the proposed
approach leads to well performance maintenance,
significant reductions of energy wastes and the lowest
EDP values among other power-saving approaches.
These experimental results demonstrate the
effectiveness of proposed power-saving technique, and
show its better performance among the other power-
saving approaches.

7. Acknowledgments

This work was supported by the Taiwan National
Science Council (NSC) under Grant No. 101-2220-E-
001-001.

8. References

[1] R. Gonzalez and M. Horowitz, "Energy dissipation in general

purpose microprocessors," IEEE Journal of Solid-State Circuits,

vol. 31, pp. 1277-1284, 1996.

[2] T. Seki, et al., "Dynamic voltage and frequency management for

a low-power embedded microprocessor," IEICE Transactions on

Electronics, vol. 88, p. 520, 2005.

[3] T. Lindholm and F. Yellin, Java virtual machine specification:

Addison-Wesley Longman Publishing Co., Inc. Boston, MA,

USA, 1999.

[4] M. Weiser, et al., "Scheduling for reduced CPU energy," Mobile

Computing, pp. 449-471, 1996.

[5] C. Hsu and U. Kremer, "The design, implementation, and

evaluation of a compiler algorithm for CPU energy reduction,"

ACM SIGPLAN Notices, vol. 38, pp. 38-48, 2003.

[6] M. Curtis-Maury, et al., "Prediction-based power-performance

adaptation of multithreaded scientific codes," IEEE Transactions

on Parallel and Distributed Systems,, vol. 19, pp. 1396-1410,

2008.

[7] Kuo-Yi Chen, Fuh-Gwo Chen and Ting-Wei Hou, "The power-

saving approach by critical section detections of Multi-cores

Embedded Systems", in Proc. of International Conference on

Mechanical and Electronics Engineering (ICMEE 2010), vol.1,

pp. 117-121, Kyoto, Japan. August 1-3, 2010.

[8] Flinn, J. and Satyanarayanan, M., "PowerScope: A tool for

profiling the energy usage of mobile applications", Mobile

Computing Systems and Applications, WMCSA'99. Second

IEEE Workshop, pp. 2-10, 1999.

[9] Simunic, T. and Benini, L. and De Micheli, G. and Hans, M,

"Source code optimization and profiling of energy consumption

in embedded systems", Proceedings of the 13th international

symposium on System synthesis, IEEE Computer Society, pp.

193-198, 2000.

[10] Kuo-Yi Chen, Chin-Yang Lin, Tien-Yan Ma and Ting-Wei Hou,

"A Power-saving Technique for the OSGi Platform", IEICE

Transactions on Information and Systems, Vol.E95-D, No.5,

pp.1417-1426, May, 2012

Published by Atlantis Press
 Copyright: the authors
 60

