

A Programmable Approach to Evaluate Ramanujan Sums

Lina Zhou, Zulin Wang, Jiadong Shang, Lei Zhao
School of Electronics and Information Engineering,

Beihang University, Beijing 100191, China
lyndabuaa@gmail.com

Song Pan
Computer Science and Technology College

Wuhan University

Abstract—Ramanujan sums, which have been widely
researched in mathematics, recently began to attract more
attentions in signal processing and communications. The
traditional methods to get the values of Ramanujan sums
follow the definition and formulas in number theory, both of
which need factorization information. As it is complex and the
amount of time needed is unpredictable in hardware
programming, a programmable approach base on the
primitive roots of unity is proposed in this paper. Only simple
arithmetic computing and cosine function is involved.
Considering that each value of Ramanujan sums is an integer,
the number of sample points required is no more than the
period of Ramanujan sums, and quantification bits required
are no more than 16 bits, as the simulation results
demonstrated.

Keywords-Ramanujan sum; programmable; primitive roots
of unity

I. INTRODUCTION

Ramanujan Sums (RS) are named after Indian
mathematician Srinivasa Ramanujan, who used them to
prove Vinogradov's theorem that every sufficiently-large odd
number is the sum of three primes in 1918 [1]. After that,
scientists began to realize their importance and use RS to
form convergent expressions of some arithmetical functions
in number theory, such as d(n) the number of divisors of n,
σ(n) the sum of divisors, and the von Mangoldt function
[1][2]. Gadiyar and Padma expanded the domain of
applications of RS from number theory to time series using
Ramanujan-Fourier transform (RFT) [3], which linked the
RS to signal analysis applications, such as low-frequency
noise processing [4], Doppler spectrum estimation [5] and T-
wave alternans analysis [6]. Besides, thanks to the integer
property, RS have been applied in simplifying the
computation of AFT [7], DFT [8] [9] and DCT [10]
coefficients under certain conditions.

There are various ways using RS in signal processing,
however, there are few ways to calculate RS values. To date,
three methods have been published including calculating
according to RS’s definition, an expression of Mobius
function and Euler Totient function in number
theory[11][12], and a z-transform method [8].These three
methods can be sorted into two kinds: recursive methods and
nonrecursive methods. Recursive methods need to compare a
series of numbers following some rules, such as calculating
according definition, while nonrecursive methods obtain the
results straightforward with few expressions, which are
preferred in generally speaking. However, Mobius function

and Euler Totient function need number factorization
information, whose complexity is hard to estimate. Also, the
definition of RS based on coprime numbers needs
factorization information. The z-transform method was
proposed by Samadi when he and his colleagues used RS to
compute DFT coefficients of even-symmetric real-valued
period signals [8]. Although it is attractive for signal
practitioners, the fact that different RS with different q need
different expressions, coupled with the fact that each closed-
form expression needs hand calculation, cause the focus on
the other methods to calculate RS values. In order to using
RS in signal processing with hardware, a simpler and more
convenient method is proposed for hardware programming.

The programmable approach follows the relationship
between RS and the primitive roots of unity with a recursive
calculation. Only the basic functions and cosine function are
involved. With the help of the integer property of RS, the
number of sample points and the number of quantification
bits are both cut down to an acceptable level.

The paper is organized as follows: In Section II, we
introduce the definition of RS and some properties of RS in
brief. In Section III, we demonstrate those three existed
calculation methods mentioned above, and then discuss the
relationship between RS and the primitive roots of unity in
Section IV. Section V is devoted to the programmable
approach to calculating RS. We give a conclusion and some
further application of RS in Section VI.

II. RAMANUJAN SUMS

Ramanujan sum is a function of two positive integer
variables q and n defined by the formula:

1
(,) 1

c () exp(2)
q

q
p
p q

p
n i n

q
π

=
=

= (1)

where (p, q)=1 means that p and q are coprime. From RS
definition, we can obtain the qth RS value c ()q n ’s closed-

form expression, the first 5 are as follows:
1

2

3

c () exp (2),

c () exp (),

2 4
c () exp () exp (),

3 3

n in

n in

n in in

π
π

π π

=
=

= +

4

5

2 6
c () exp() exp(),

4 4
2 4

c () exp() exp()
5 5
6 8

 exp() exp().
5 5

n in in

n in in

in in

π π

π π

π π

= +

= +

+ +

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0033

There are a number of reasons why RS are chosen as a
useful tool in signal processing, partly because of the RS
properties and partly because of their characteristic. Four
properties are central to almost every application, and briefly
they are as follows;

Property 1: integer property c ()q n z∈

Property 2: periodic property c () c (mod)q qn n q=

Property 3: multiplicative property
c () c ()c (), (,) 1qq q qn n n q q′ ′ ′= =

Property 4: orthogonality property

2

1

2 2
q1

c ()c () 0,

c () (),

qq

q qn

q

n

n n q q

n q q q qϕ

′
′=

=

 ′= ≠

′ = =

The integer property provides signal processing
operations without plural operations; the periodic property
reduces the number of RS values ()qc n to no more than q for

any n with a fixed q. The multiplicative property gives a way
to calculate big RS values from other small RS values, and
the orthogonality property is useful to find orthoganality
frequencies of the signal. The reader is referred to [13] to
find the proof processes of those properties. Besides, the
spectrum of RS is non-uniform distributed, which helps a lot
in finding some arithmetical features hidden in the signal.
The spectrum of first 10 series of RS is shown in Fig.1,
where the heights vary with the different q, and the x axis
denotes the different normalized frequency as π*rad/sample.
Considering the symmetry of the spectrum, only the
frequencies between [0, π] are included in this figure.

Figure 1. The spectrum of first 10 series of RS

III. TRADITIONAL METHODS

Besides following RS’s definition, a non-recursive
method using Mobius function and Euler Totient function is
widely used. RS values are evaluated from

()
c () ()

(,) ()
(,)

q

q q
n

qq n
q n

ϕμ
ϕ

= (2)

where φ(q) is Euler function and μ(n) is Mobius function.
These two functions are explained later. First, let (q, n)
represent the greatest common divider of q and n. Factoring
a number into prime numbers, q and n are transcript as:

 (is a)

 (is a)

i

k

i i
i

k k
k

q q q prime

n n n prime

α

β

=

=

∏
∏

 (3)

Euler’s Totient function ()qϕ counts the number of
positive integers less than or equal to q that are coprime to q.
A commonly used computation formula is:

1
() (1)

i i

q q
q

ϕ = −∏ (4)

We can view the Mobius function μ(n) as a coding of
prime numbers, which is defined as

0, if contains a square 1,

1, if 1,
()

(1) , if is the product

 of distinct primes.

k

n

n
n

n

k

κβ

μ

 >
 ==

−

 (5)

The proof of (2) can also be found in [13]. It can be seen
that (5) is simple, but the Euler function and Mobius function
require the factors of q in RS value c ()q n . As we all know

that it is hard to estimate the complexity of number
factorization, this method is not simple enough for hardware
programming applications.

The other recursive method of the computation of RS
was published by Samadi and his colleagues in 2005 [8].
With the help of cyclotomic polynomial F ()q z , the one-sided

z-transform of RS can be written as:

1 ()

1

F ()
C ()

F ()

q
q

q
q

d
z z

dzz
z

ϕ−

−= (6)

Following (6), 10C ()z is given by
1 2 3

10 1 2 3 4

4 3 2
C ()

1

z z z
z

z z z z

− − −

− − − −

− + −=
− + − +

 (7)

Actually, different c ()q z with different q has different

expressions depending on F ()q z . Thus this method only

suits for calculating RS values with fixed q rather than
continuous q.

IV. USING TRIGONMETRIC EXPRESSION TO CALCULATED

RAMANUJAN SUMS

Considering that the exponential can be denoted as
trigonometric function with Euler formula:

cos sinixe x i x= + (8)
Invoking RS integer property, RS can be described by

cosine function and finally equal to:

1
(,) 1

c () cos(2)
q

q
p
p q

p
n n

q
π

=
=

= (9)

We can use this cosine expression (9) to discuss the
programmable method in the subsequent sections. To
introduce this method, we follow the definitions of the roots
of unity and the primitive roots of unity.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0034

An nth root of unity, where q=1,2,3… is a positive
integer, is a complex number z which satisfies the following
equation:

1qz = (10)
An nth root of unity is primitive if there does not exist a

root of unity for some smaller k:
1 (1, 2,3, , 1)kz k n≠ = − (11)

Given the de Moivre's formula, this is valid for all real x
and integer q:

(cos sin) cos sinqx i x qx i qx+ = + (12)
Let x = 2π/q, we have a primitive qth root of unity and

could be verified by:
2 2

(cos sin) cos 2 sin 2 1qi i
q q

π π π π+ = + = (13)

For k=1,2,... q−1, we then obtain this inequation:

2 2 2 2

(cos sin) cos sin 1k k k
i i

q q q q

π π π π+ = + ≠ (14)

Note that all the primitive nth root of unity must be
similar to 2π/n. Together with the connection between RS
and primitive roots of unit that RS are sums of series of
primitive roots [11], a proposition is assumed:

Proposition 1: The primitive nth root of unity is
composed of 2kπ/q except the primitive kth root of unity,
where 0<k<q and q>0.

The proof of the proposition is referred to the appendix.
The first 5 primitive roots of unity are listed in Table І as an
example which shows that the primitive roots are
corresponding to the RS expressions from their definition
mentioned in Section II.

TABLE I. LIST OF THE FIRST 5 PRIMITIVE ROOTS OF UNITY

q Primitive qth roots of
unity

The number of qth roots of
unity

1 0 1
2 π 1
3 2

3
π±

2

4 2

4
π±

2

5 2 4
,

5 5
π π± ±

4

The first 5 primitive roots of unity are the same as Ramanujan sums

According to the properties of primitive roots, the
number of primitive qth roots of unity is equal to ()qϕ .
Those primitive qth roots of unity are the coefficients of n in
(1) and (9). Given qP denotes the set of the qth primitive

roots of unity, RS values can be calculated from

c () cos()
qi q

q qi
p P

n np
∈

= (15)

Considering that cosine function is an even-symmetric
function and the primitive roots of unity are also even-
symmetric, the computation of RS value could be reduced to
half of the original computation.

V. ANALYSIS OF THE PROGRAMMABLE METHOD

The programmable method is based on the primitive
roots of unity and taken them as the coefficients of cosine
functions. The cosine function values usually store in the
form of a table in FPGAs. The size of this table depends on
the number of sample points in the x axis and the number of
quantization bits in the y axis. To cut down the number of
bits stored, we simulated the relationship between the RS
value generated from the programmable approach and the
number of sample points and between the number of
quantization bits.

Fig.2 shows that for a prime number, the number of
sample points between 0 and 2π required is near the period
of RS q. However, the number of sample points needed for
composite numbers is about half of the period of RS q. The
relationship between the number of error RS values and
quantization bits is similar to the number of sample points as
shown in Fig.4 and Fig.5. When q is a prime number, the
quantization bits needed is more than composite number.
Generally speaking, 16 bits quantization is preferred.

Figure 2. The relationship among RS values, sample points and prime q

Figure 3. The relationship among RS values, sample points and composite

q

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0035

Figure 4. The relationship among RS values, sample points and prime q

Figure 5. The relationship among RS values, sample points and compsite

q

VI. CONCLUSION

In this article, we proposed a method based on primitive
roots of unity to compute Ramanujan sums, which doesn’t
need to figure out number factorization, which make this
method suitable for hardware programming. The required
cosine function values usually store in FPGA in advance,
however, the size of this bit file is small and can be used in
other applications.

Furthermore, from the definition (1), ()qc n is a sum of a

set of ()pe n characters, which are the basis of Discrete

Fourier Transform (DFT). ()pe n are denoted by:

() exp(2)p

p
e n i n

q
π=

Similar with DFT, transform based on Ramanujan sums
show some new advantages [4,10] and need some further
research.

ACKNOWLEDGMENT

This work is supported by National Natural Science
Foundation of China (61071070).

REFERENCES
[1] S. Ramanujan, “On certain trigonometric sums and their applications

in the theory of numbers,” Trans. Camb. Phil Soc.,vol 22, pp.259-
276,1918.

[2] G. hardy, proc. Cambridge philos. Soc., 20,1921,pp:263

[3] H. gadiyar, R. padma, “Linking the circle and the sieve: Ramanujan-
Fourier series,” Physica A,269 ,1999, pp:503

[4] M. Planat, H. Rosu, and S. Perrine, “Ramanujan sums for signal
processing of low-frequency noise,” Phys.rev.E.vol.66 pp.56128

[5] M. Lagha, M. Bensebti, “Doppler spectrum estimation by
Ramanujan-Fourier transform(RFT),” Digital Signal
Processing.2009,19(5), pp. 843-851

[6] L. T. Mainardi, M. Bertinelli, R. Sassi, “Analysis of T-wave alternans
using the Ramanujan transform,” Computer in Cardiology Bologna,
2008,35, pp:605-608

[7] L. Knockaert, “A Generalized Mobius Transform, Arithmetic Fourier
Transform and Primitive Roots,” IEEE Trans.on Signal Processing,
vol.44, no.5, 1996, pp.1307-1310.

[8] S. Samadi, M. O. Ahmad, and M. N. Swamy, “Ramanujan sums and
discrete Fourier transforms,” IEEE Signal Process. Lett., vol. 12, no.
4, Apr. 2005, pp. 293-296 .

[9] S. C. Pei, K. W. Chang, “Odd Ramanujan Sums of Complex Roots of
Unity,” IEEE Signal Processing Letters, vol.14, no.1, 2007, pp.20-23.

[10] K. S. Geetha, V. K. Ananthashayana, “Fast multiplierless recursive
transforms using Ramanujan numbers,” Proceedings of IEEE
Multimedia, Signal Processing and Communication Technologies,
IEEE Press, Mar.2009, pp.116-11.

[11] G.H. Hardy,”Note on Ramanujan’s trigonometical function cq(n) and
certain series of arithmetical funcions”,Proc. Camb. Philip.
Soc,22,1921, pp.263

[12] E. Cohen. “An extension of Ramanujan's sum. III. Connections with
totient functions,” Duke Math. J. 23, 1956, pp:623—630

[13] P. Moree, H. Hommerson, “Value distribution of Ramanujan sums
and of cyclotomic polynomial coefficients,” Mathematics Subject
Classification, 2000, pp.7-10

APPENDIX

Proposition 1. The primitive nth root of unity is
composed of 2kπ/q except the primitive kth root of unity,
where 0<k<q and q>0.

The proposition is proved by mathematical induction.
Proof: a) We check that the proposition is true for q=1

and q=2.
Let q=1 and x=2kπ/q=0/1=0. The primitive first root of

unity is exp(0)=cos0=1. Let q=2 and x=2kπ/q=2π/2=π. The
primitive second root of unity is exp (ix)=cosπ=-1

b) Assume that q=m-1 and m>2. The proposition holds,
i.e., all the primitive (m-1)th roots of unity are composed of
exp(ix), x=2kπ/(m-1), except the primitive kth root of unity,
where 0<k<(m-1).

Given a natural number k, assume that

2

{ : and exp() is

primitive th root of unity}

n

k
P x x k q i x

q

q

π π= = ,0 < <

 (17)

denote the set of prime qth root of unity, ordered in size.
The set of all nonprimitive qth roots of m will be denoted

by nQ

2

{ : and exp()

 is nonprimitive th root of unity}

n

k
Q x x k q i x

q

q

π π= = ,0 < <
 (18)

As we associate (17) with (18), we have:

 2
{ : }n n n

k
U P Q x x k q

q

π= = = ,0 < < (19)

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0036

where nU contains the 1st, 2nd,3rd…qth roots of unity.
For q=m, following the induction hypothesis we have

mU , mP and mQ .

Take an element jx from set mU , and we obtain

 2
,j j m

j
x x U

m

π= ∈ . (20)

If for every k = 1, 2,... ,m−1,
 (cos sin) 1k

j jx i x+ ≠ . (21)
thus j mx P∈ .

Or there is an integer k<m such that:

2 2
(cos sin) (cos sin)

2 2
cos sin 1

k k
j j

j j
x i x i

m m
jk jk

i
m m

π π

π π

+ = +

 = + =
. (22)

Then j mx Q∈ , and we obtain (,) 1j m ≠ and

 integer
jk

m
= . (23)

Let gcd(j,m) denote the greatest common divisor of j and
m,

gcd(,)

gcd(,)

,

j j j m

m m j m

j j
m m

m m

′= ×
′= ×
′ ′= <
′

 (24)

From (22), (23), (24), we obtain (,) 1j m′ ′ = , hence

 , j mx P m m′ ′∈ < . (25).

Notice that
0

n m
m n

Q P
< <

= , so the proposition holds for

q=m.
From a) and b), the proposition statement is true.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0037

