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Abstract—Ramanujan sums, which have been widely 
researched in mathematics, recently began to attract more 
attentions in signal processing and communications. The 
traditional methods to get the values of Ramanujan sums 
follow the definition and formulas in number theory, both of 
which need factorization information. As it is complex and the 
amount of time needed is unpredictable in hardware 
programming, a programmable approach base on the 
primitive roots of unity is proposed in this paper. Only simple 
arithmetic computing and cosine function is involved. 
Considering that each value of Ramanujan sums is an integer, 
the number of sample points required is no more than the 
period of Ramanujan sums, and quantification bits required 
are no more than 16 bits, as the simulation results 
demonstrated. 
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I.  INTRODUCTION 

Ramanujan Sums (RS) are named after Indian 
mathematician Srinivasa Ramanujan, who used them to 
prove Vinogradov's theorem that every sufficiently-large odd 
number is the sum of three primes in 1918 [1]. After that, 
scientists began to realize their importance and use RS to 
form convergent expressions of some arithmetical functions 
in number theory, such as d(n) the number of divisors of n, 
σ(n) the sum of divisors, and the von Mangoldt function 
[1][2]. Gadiyar and Padma expanded the domain of 
applications of RS from number theory to time series using 
Ramanujan-Fourier transform (RFT) [3], which linked the 
RS to signal analysis applications, such as low-frequency 
noise processing [4], Doppler spectrum estimation [5] and T-
wave alternans analysis [6]. Besides, thanks to the integer 
property, RS have been applied in simplifying the 
computation of AFT [7], DFT [8] [9] and DCT [10] 
coefficients under certain conditions. 

There are various ways using RS in signal processing, 
however, there are few ways to calculate RS values. To date, 
three methods have been published including calculating 
according to RS’s definition, an expression of Mobius 
function and Euler Totient function in number 
theory[11][12], and a z-transform method [8].These three 
methods can be sorted into two kinds: recursive methods and 
nonrecursive methods. Recursive methods need to compare a 
series of numbers following some rules, such as calculating 
according definition, while nonrecursive methods obtain the 
results straightforward with few expressions, which are 
preferred in generally speaking. However, Mobius function 

and Euler Totient function need number factorization 
information, whose complexity is hard to estimate.  Also, the 
definition of RS based on coprime numbers needs 
factorization information. The z-transform method was 
proposed by Samadi when he and his colleagues used RS to 
compute DFT coefficients of even-symmetric real-valued 
period signals [8]. Although it is attractive for signal 
practitioners, the fact that different RS with different q need 
different expressions, coupled with the fact that each closed-
form expression needs hand calculation, cause the focus on 
the other methods to calculate RS values. In order to using 
RS in signal processing with hardware, a simpler and more 
convenient method is proposed for hardware programming. 

The programmable approach follows the relationship 
between RS and the primitive roots of unity with a recursive 
calculation. Only the basic functions and cosine function are 
involved. With the help of the integer property of RS, the 
number of sample points and the number of quantification 
bits are both cut down to an acceptable level. 

The paper is organized as follows: In Section II, we 
introduce the definition of RS and some properties of RS in 
brief. In Section III, we demonstrate those three existed 
calculation methods mentioned above, and then discuss the 
relationship between RS and the primitive roots of unity in 
Section IV. Section V is devoted to the programmable 
approach to calculating RS. We give a conclusion and some 
further application of RS in Section VI. 

II. RAMANUJAN SUMS 

Ramanujan sum is a function of two positive integer 
variables q and n defined by the formula:  
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where (p, q)=1 means that p and q are coprime. From RS 
definition, we can obtain the qth RS value c ( )q n ’s closed-

form expression, the first 5 are as follows: 
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There are a number of reasons why RS are chosen as a 
useful tool in signal processing, partly because of the RS 
properties and partly because of their characteristic. Four 
properties are central to almost every application, and briefly 
they are as follows;  

Property 1: integer property c ( )q n z∈  

Property 2: periodic property c ( ) c ( mod )q qn n q=  

Property 3: multiplicative property  
c ( ) c ( )c ( ), ( , ) 1qq q qn n n q q′ ′ ′= =  

Property 4: orthogonality property  
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The integer property provides signal processing 
operations without plural operations; the periodic property 
reduces the number of RS values ( )qc n to no more than q for 

any n with a fixed q. The multiplicative property gives a way 
to calculate big RS values from other small RS values, and 
the orthogonality property is useful to find orthoganality 
frequencies of the signal. The reader is referred to [13] to 
find the proof processes of those properties. Besides, the 
spectrum of RS is non-uniform distributed, which helps a lot 
in finding some arithmetical features hidden in the signal. 
The spectrum of first 10 series of RS is shown in Fig.1, 
where the heights vary with the different q, and the x axis 
denotes the different normalized frequency as π*rad/sample. 
Considering the symmetry of the spectrum, only the 
frequencies between [0, π ] are included in this figure. 

 

Figure 1.  The spectrum of first 10 series of RS 

III. TRADITIONAL METHODS 

Besides following RS’s definition, a non-recursive 
method using Mobius function and Euler Totient function is 
widely used. RS values are evaluated from  
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where φ(q) is Euler function and μ(n) is Mobius function. 
These two functions are explained later. First, let (q, n) 
represent the greatest common divider of q and n. Factoring 
a number into prime numbers, q and n are transcript as: 
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Euler’s Totient function ( )qϕ  counts the number of 
positive integers less than or equal to q that are coprime to q. 
A commonly used computation formula is: 
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We can view the Mobius function μ(n) as a coding of 
prime numbers, which is defined as 
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The proof of (2) can also be found in [13]. It can be seen 
that (5) is simple, but the Euler function and Mobius function 
require the factors of q in RS value c ( )q n . As we all know 

that it is hard to estimate the complexity of number 
factorization, this method is not simple enough for hardware 
programming applications. 

The other recursive method of the computation of RS 
was published by Samadi and his colleagues in 2005 [8]. 
With the help of cyclotomic polynomial F ( )q z , the one-sided 

z-transform of RS can be written as: 
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Following (6), 10C ( )z  is given by  
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Actually, different c ( )q z  with different q has different 

expressions depending on F ( )q z . Thus this method only 

suits for calculating RS values with fixed q rather than 
continuous q.  

IV. USING TRIGONMETRIC EXPRESSION TO CALCULATED 

RAMANUJAN SUMS 

Considering that the exponential can be denoted as 
trigonometric function with Euler formula: 

cos sinixe x i x= +                                                     (8) 
Invoking RS integer property, RS can be described by 

cosine function and finally equal to:  
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We can use this cosine expression (9) to discuss the 
programmable method in the subsequent sections. To 
introduce this method, we follow the definitions of the roots 
of unity and the primitive roots of unity. 
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An nth root of unity, where q=1,2,3… is a positive 
integer, is a complex number z which satisfies the following 
equation:  

1qz =                                                                        (10) 
An nth root of unity is primitive if there does not exist a 

root of unity for some smaller k: 
1 ( 1, 2,3, , 1)kz k n≠      = −                                     (11) 

Given the de Moivre's formula, this is valid for all real x 
and integer q: 

(cos sin ) cos sinqx i x qx i qx+ = +                            (12) 
Let x = 2π/q, we have a primitive qth root of unity and 

could be verified by: 
2 2

(cos sin ) cos 2 sin 2 1qi i
q q

π π π π+ = + =           (13) 

For  k=1,2,... q−1, we then obtain this inequation: 

 
2 2 2 2
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q q q q

π π π π+ = + ≠ (14) 

Note that all the primitive nth root of unity must be 
similar to 2π/n. Together with the connection between RS 
and primitive roots of unit that RS are sums of series of 
primitive roots [11], a proposition is assumed:  

Proposition 1: The primitive nth root of unity is 
composed of 2kπ/q except the primitive kth root of unity, 
where 0<k<q and q>0. 

The proof of the proposition is referred to the appendix. 
The first 5 primitive roots of unity are listed in Table І as an 
example which shows that the primitive roots are 
corresponding to the RS expressions from their definition 
mentioned in Section II. 

TABLE I.  LIST OF THE FIRST 5 PRIMITIVE ROOTS OF UNITY 

q Primitive qth roots of 
unity 

The number of qth roots of 
unity 

1 0 1 
2 π  1 
3 2

3
π±  

2 

4 2

4
π±  

2 

5 2 4
,

5 5
π π± ±  

4 

The first 5 primitive roots of unity are the same as Ramanujan sums 

According to the properties of primitive roots, the 
number of primitive qth roots of unity is equal to ( )qϕ . 
Those primitive qth roots of unity are the coefficients of n in 
(1) and (9). Given qP  denotes the set of the qth primitive 

roots of unity, RS values can be calculated from 

  

c ( ) cos( )
qi q

q qi
p P

n np
∈

=                                   (15) 

Considering that cosine function is an even-symmetric 
function and the primitive roots of unity are also even-
symmetric, the computation of RS value could be reduced to 
half of the original computation. 

V. ANALYSIS OF THE PROGRAMMABLE METHOD 

The programmable method is based on the primitive 
roots of unity and taken them as the coefficients of cosine 
functions. The cosine function values usually store in the 
form of a table in FPGAs. The size of this table depends on 
the number of sample points in the x axis and the number of 
quantization bits in the y axis. To cut down the number of 
bits stored, we simulated the relationship between the RS 
value generated from the programmable approach and the 
number of sample points and between the number of 
quantization bits.  

Fig.2 shows that for a prime number, the number of 
sample points between 0 and 2π  required is near the period 
of RS q. However, the number of sample points needed for 
composite numbers is about half of the period of RS q. The 
relationship between the number of error RS values and 
quantization bits is similar to the number of sample points as 
shown in Fig.4 and Fig.5. When q is a prime number, the 
quantization bits needed is more than composite number. 
Generally speaking, 16 bits quantization is preferred. 

 
Figure 2.  The relationship among RS values, sample points and prime q 

 
Figure 3.  The relationship among RS values, sample points and composite 

q 
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Figure 4.  The relationship among RS values, sample points and prime q 

 
Figure 5.  The relationship among RS values, sample points and compsite 

q 

VI. CONCLUSION 

In this article, we proposed a method based on primitive 
roots of unity to compute Ramanujan sums, which doesn’t 
need to figure out number factorization, which make this 
method suitable for hardware programming. The required 
cosine function values usually store in FPGA in advance, 
however, the size of this bit file is small and can be used in 
other applications. 

Furthermore, from the definition (1), ( )qc n  is a sum of a 

set of ( )pe n  characters, which are the basis of Discrete 

Fourier Transform (DFT). ( )pe n  are denoted by: 

( ) exp(2 )p

p
e n i n

q
π=    

Similar with DFT, transform based on Ramanujan sums 
show some new advantages [4,10] and need some further 
research. 
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APPENDIX 

Proposition 1. The primitive nth root of unity is 
composed of 2kπ/q except the primitive kth root of unity, 
where 0<k<q and q>0. 

The proposition is proved by mathematical induction. 
Proof: a) We check that the proposition is true for q=1 

and q=2. 
Let q=1 and x=2kπ/q=0/1=0. The primitive first root of 

unity is exp(0)=cos0=1. Let q=2 and x=2kπ/q=2π/2=π. The 
primitive second root of unity is exp (ix)=cosπ=-1 

b) Assume that q=m-1 and m>2. The proposition holds, 
i.e., all the primitive (m-1)th roots of unity are composed of 
exp(ix), x=2kπ/(m-1), except the primitive kth root of unity, 
where 0<k<(m-1).  

Given a natural number k, assume that 

 
2

{ : and exp( ) is

primitive th root of unity}

n

k
P x x k q i x

q

q

π π= =  ,0 < <       

                              
  (17) 

denote the set of prime qth root of unity, ordered in size. 
The set of all nonprimitive qth roots of m will be denoted 

by nQ  
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As we associate (17) with (18), we have: 

 2
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where  nU  contains the 1st, 2nd,3rd…qth roots of unity.  
For q=m, following the induction hypothesis we have 

mU , mP and mQ . 

Take an element jx  from set mU , and we obtain 

   2
,j j m

j
x x U

m

π= ∈ .  (20) 

If for every k = 1, 2,... ,m−1,  
   (cos sin ) 1k

j jx i x+ ≠ .  (21) 
thus  j mx P∈ . 

Or there is an integer k<m such that: 
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Then j mx Q∈ , and we obtain ( , ) 1j m ≠  and 

  integer
jk

m
= . (23) 

Let gcd(j,m) denote the greatest common divisor of j and 
m, 

 
gcd( , )

gcd( , )

,

j j j m

m m j m

j j
m m

m m

′= ×
′= ×
′ ′=    <  
′

   (24)  

From (22), (23), (24), we obtain  ( , ) 1j m′ ′ =  , hence 

 ,   j mx P m m′ ′∈ <  .  (25). 

Notice that
0

n m
m n

Q P
< <

=  , so the proposition holds for 

q=m. 
From a) and b), the proposition statement is true. 
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