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Abstract—Vector represents a major category of data managed 
by GIS, which is traditionally used for representing geographic 
entities such as political borders, roads, rivers and cadastral 
information. In this paper we present a key data structure and 
associated render-time algorithm for the combined display of 
multi-resolution 3D terrain and traditional GIS vector data, 
which is designed to create fully 3D scenes that deliver the best 
possible quality and do not require dynamic texture generation 
and handling. The algorithm allows the system to adapt the 
visual mapping to the context and user needs, and enables 
users to interactively modify vector through the visual 
representation, which represents a basic mechanism for 3D 
GIS interface and facilitates the development of visual analysis 
and exploration tools. 
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I. INTRODUCTION 

Real-time visualization of large scale terrains has been an 
active area of research for more than a decade[1]. In 
geographical information systems (GIS), vector data has 
important applications in the analysis and management of 
virtual landscapes. Therefore, methods that allow combined 
visualization of terrain and geo-spatial vector data are 
required. These data are typically organized as either raster 
or vector data. Vector data represent geometry as lists of 
coordinates that define points, lines and polygons. A key 
issue in both the computer graphics and the GIS community 
is eliminating unnecessary or unwanted detail from the 
output image [2]. GIS geometric simplification is one aspect 
of the more general methods, which are methods for visually 
representing a given geographic entity or set of entities using 
different visuals when displaying the entities at different map 
scales. 

A fundamental task in GIS applications is to render 
vector data representing elements such as road networks, 
political districts and rivers. Rendering vectors such that they 
precisely drape over terrain is challenging. There are two 
general approaches to rendering vector data on a 3D mesh. 
One option is to convert the vector data to a texture image 
layer, and the second option is to render the vector data as 
geometric primitives [3]. For a number of reasons, we 
believe that vector data should be treated independently from 
the image data and therefore should be rendered as separate 
geometry by the graphics pipeline [3]. This presents a 
challenge because modern algorithms render a LOD terrain 
whose constituent triangles are changing at every frame. In 
order for the vector data to appear correctly on the 3D mesh, 
the vector geometry must therefore also change at each 

frame. In addition, Schneider present a method that is based 
on stencil shadow volume algorithm and allows high quality 
real-time overlay of vector on terrain[4]. The method render 
vector using a screen-space algorithm, so can avoid aliasing 
artifacts and its performance is almost independent of terrain 
geometry. 

In this paper, we presents a key data structure and 
associated algorithms for overlaying traditional GIS data on 
a global, 3D terrain visualization system.  Although the 3D 
terrain, image layers and 2D vector data are too large to fit 
into primary memory. This requires dynamic paging of all 
three data types based on the current 3D view of the database. 
Finally, we present the results and performance analysis of 
the implemented algorithm. 

II. MULTI-RESOLUTION DATA GENERATION 

For large-scale 3D terrain display, some technologies are 
come into mature. Lindstrom presented SOAR algorithm [5] 
and Mark presented ROAM algorithm[6], both become 
famous algorithm for terrain mesh simplification. 

A.  Terrain LOD generation 

Dealing with huge amounts of data is often a difficult 
challenge. The basic data hierarchy on which our approach is 
based is the restricted quad-tree, which ensures that the 
levels of neighboring quads differ by not more than one. This 
is a generic and flexible data structure, and there are multiple 
ways to construct consistent triangle meshes from the 
hierarchy. It is easy to apply the techniques presented in the 
following sections to variants of restricted quad-trees that are 
tailored for specific applications. 

 
(a) LOD of terrain (b) Terrain with vector data 

Figure 1. A quad-tree structure of Terrain 

Simplification algorithms take a terrain model as input 
and produce a simplified version of it, which provides a 
coarser representation of the same terrain, based on a smaller 
data set. Most methods are based on the iterated or 
simultaneous applications of local operators that simplify 
small portions of the mesh by reducing the number of 
vertices. The patch hierarchy is constructed top-down by 
subdividing each patch into 2×2 children patches. 
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To render the scene, a rendering quad-tree is built that 
gives at first, conservative approximation of the necessary 
level of detail for different parts of the scene. This quad-tree 
determines which quads from the data set quad-trees need to 
be used. An initial mesh can be constructed directly from the 
rendering tree. This initial mesh is then refined to produce a 
tailored mesh that guarantees consistency between 
neighboring quads. An overview and example result of the 
process is given in Figure 1. 

B. Vector data procession 

In order to match the DEM data levels from the pyramid 
structure, corresponding scales of vector data are required. In 
our approach, we use dynamic generation method to satisfy 
this requirement. One simple method is to make dense points 
of vector objects to be sparse depend its distance from the 
viewpoint. In our approach, we adopt method presented by 
Sun [7]. As shown in figure 1 (b), where dash line means that 
vector data is just indexed but not divided into quad-tree 
blocks. 

III. TERRAIN MATCHING OF VECTOR 

Geometry based methods treat vector data as graphic 
objects, and can be classified into points, polylines and 
polygons. As a pyramid structure is used for loading terrain 
data in real time depend on viewpoint, so at each frame just a 
few blocks are refreshed, this make smooth rendering is 
feasible when display card has a good capabilities. Generally, 
the most time of consumption for geometry based vector 
visualization approach spend on triangles searching and 
intersection calculation.  

A.  Point vector matching 

Point vector are very common in GIS, such as city name, 
label, which cannot be rendered under terrain surface. 
Simply disabling depth test or setting render order cannot 
display the relative location correctly, especially when the 
view point is near from this position. 

When high resolution tiles loaded from out-of-memory, 
the altitude of the point will be updated using the newest 
terrain mesh, and the altitude of the point must be calculated 
as soon as possible. For point labels on the ground, set the 
triangle contain this point is T, with vertex V0(x0, y0, z0), V1(x1, 
y1, z1), and V2(x2, y2, z2), then the equation of the plane of this 
triangle can be expressed as: 
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Then the altitude of the point can be computed as: 
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B. Polyline vector matching 

There is a traditional simplification algorithm, which can 
maintain important geometric characteristics of polylines. 

However, topological relationships may change, resulting in 
topological inconsistencies. A common approach is to render 
polylines to a texture, which leads to aliasing as the viewer 
zooms in. Rendering polylines on terrain by subdivision of 
points along the lines requires adjustment in response to 
terrain LOD tiles and the coplanar geometry will lead to z-
fighting [3]. Our approach requires no pre-processing, is 
decoupled from terrain LOD, produces high visual quality 
constant pixel-width polylines with no cracking or smearing, 
has virtually no CPU overhead, allows for dynamic terrain 
and polylines, and is simpler to implement than on-demand 
texture-based and subdivision methods. 

 
(a)  Polygon integration before 

mesh operations 
 (b)  Polygon integration 

after mesh operations 

(c)  Integration results of real terrain with vector 

Figure 2. matching process of Polyline vector 

First, each point in the polyline is transferred to the 
spherical space and duplicated. One is moved away from the 
global centre to above the terrain surface and the other below, 
forming a vertical line, then a wall across the polyline with 
many vertical lines. The intersection of this wall with the 
terrain defines the desired polyline. The intersection is found 
in screen-space using a fragment shader that has access to the 
terrain’s depth and silhouette textures. The tessellation 
control fragment shader uses it to decide the subdivision 
level of each patch, while the tessellation evaluation shader 
uses it to place each generated vertex at the proper height 
value. During this stage, we make the best of parallel 
character of GPU, then an improvement of performance will 
get. If a fragment is in front of the terrain and one of the 
surrounding fragments from the wall is behind terrain, a 
potential intersection is found. To avoid false positives, 
fragments on the terrain’s silhouette are detected using the 
silhouette texture and discarded. Our method will not 
generate fragments when the wall is viewed on-edge, then a 
shadow volume is rendered to handle these cases. 

C. Polygon vector matching 

The creation of 3D polygon geometry primitives is 
complex as it needs to determine it’s inside surface that is 
usually not one plane. In order to keep coincident with LOD 
tiles of terrain surface, the aim of 3D polygon geometry 
creation in our approach is to find triangles of terrain tiles 
which are inside and intersect with 2D vector polygon. 

The polygon borders are treated in a similar way as the 
polylines described above. The interior of the polygon is 
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triangulated and added to the new geometry recursively, to 
which a z-offset is added in order to avoid interference with 
the terrain and rendering artifacts. If the whole vector data 
structure is rendered in the frame buffers, each vector feature 
is significantly zoomed out, even just occupies several pixels. 
In this case, a segment may be occluded by other segments 
so that we cannot identify or remove all non-compliant 
shortcut segments at a time. 

Polygonal data sets such as building blocks, green areas, 
forests, and roads are loaded from 2D GIS layer files and 
integrated into a custom Constrained Delaunay 
implementation for the terrain. The main properties of this 
method is, that the shape of the terrain is not altered, and z-
buffer problems do not occur, since the resulting terrain is 
still a single continuous surface but with integrated areas that 
represent the input 2D shapes. After the geometrical 
integration operation we can identify the triangles lying 
completely inside the area and mark them as owned by the 
GIS layer the polygon comes from. 

 
(a)  Polygon integration before 

mesh operations 
(b)  Polygon integration after 

mesh operations 

Figure 3. matching process of polygon vector 

Usually, the short segment formed by two vertices far 
away from each other is likely to exceed the e-Voronoi zone. 
In that condition, we can just link a vertex with the nearer m 
(m is a positive integer) vertices to create shortcut segments. 
If the sample interval of the map is small, the variable m 
should be set larger. Otherwise, m can be smaller. Compared 
with the geometry algorithms, our method preserves 
topological consistency efficiently, and avoids dealing with 
unnecessary shortcut segments. In the following section, we 
present how to keep the topological relationships. 

IV. VISUALIZATION OF VECTOR DATA 

An obstacle to be tackled is that the detailed geometry 
and texture representation of terrain surfaces demands a large 
amount of memory. To accomplish the goal for transmission 
and rendering of massive geographical maps, our approach 
combines view-dependent LOD simplification and out-of-
core rendering algorithm. Fig. 4 illustrates the architecture of 
our scheme. The architecture is composed of three 
components: the client, the server and the database/files.  

When rendering, the client sends the requests to the 
server for multi-resolution data falling inside the current 
view frustum. The server delivers the base models of the 
spatial objects to the client first. Then, the client interacts 
with the users and sends the view parameters to the server 
for fine models update. The simplification process of the 
server produces a stream of map simplification operators. 
These update operators are sent to the client and the selective 
model is reconstructed and rendered. As the viewers navigate 
closer to the interested region, the details will be updated and 
refined accordingly. After all the datasets reach the client or 

the added details become imperceptible to the viewers, the 
process stops. 

Figure 4. Flow chart of the rendering process 

Eliminating the phenomenon of image popping and 
maintaining a higher frame rate of graphics rendering is 
always two major problems need to solve for visualization 
simulation algorithm of large-scale terrain. For the usage of 
very large terrain models, it will be inevitable to use more 
than one processor in parallel. Higher demands in memory 
capacity, processing speed, drawing speed and transfer 
efficiency appear. Multi-thread data loading was used, and 
for the usage of very large terrain models, it will be 
inevitable to use more than one processor in parallel. On one 
hand, independent parts of the landscape can then be updated 
independently. On the other hand, only multi-threading will 
ensure that the user-interaction and the update-process can be 
handled in parallel. 

V. RESULTS AND CONCLUSIONS 

The approach in this paper has been successfully used for 
rendering of 3D vector data in several areas. We 
implemented above idea and method in MS visual studio 
C++ environment, and tested the performance of our 
application, based on low level graphic API, OpenGL, and 
the window size is in all cases 1024×768 pixels. We used a 
2.66GHz Pentium Dual-Core CPU, with 2GB DDR2 of 
RAM, NVIDIA GeForce 9300M GS programmable graphic 
card with 256M RAM, and SATA 500G disk.  

 
(a)  (b) 

 
(c) (d) 

Figure 5. Results of our method 

The DEM data set consists of global sample points with 
the ground sample distance of 20m, and the image consists 
of global data with the test area of resolution of 5m. The test 
vector layer includes 8 areas of 3628 sample points and the 
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polyline vector layer includes 144 roads of 18800 sample 
points. Before rendering the vector data, the landscape is 
rendered at 60 frames per second, after the vector data are 
overlaid on the terrain, the rendering speed keeps unchanged, 
only the memory cost increases 6.3MB. Figure 5 shows the 
rendering result of the habitation (semi-transparent yellow 
area) and road (red line) data on the 3d terrain landscape. 

Rendering vector data can enhance many invisible 
information in 3D landscape map, and made 3D landscape 
map more close to a 3DGIS. Both pyramid structure and 
index of quad-tree can improve large-scale vector data of 
multiple scales to be load easily in real time. In order to 
overcome expensive computation of real time intersection of 
terrain mesh with vector line segments, this paper presents a 
framework and correlative approach for rendering large scale 
geographical data efficiently, including terrain grid and 
vector data. Using GPU based graphics hardware; we 
achieve vector data simplification efficiently. Based on the 
simplification, we establish LOD vector models. Finally, we 
implement dynamically reconstruction of large scale terrain 
with all types of vector data. We are going to further improve 
the algorithm as proposed in this paper. The future work 
includes (1) storing vector layers and blocks with different 
relative importance with a hierarchical data structure, (2) 
adapting the animation speed to the viewpoint moving speed, 
and (3) incorporating textures layers into the real-time 
rendering system. 
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