
Visualization of Vector Data on Global Scale Terrain

Baosong Deng, Dong Xu
Information Research Center, Institute of logistics

science, Beijing 100071, China
E-mail: dbs310@163.com

Jinxia Zhang, Chiyang Song
North China Institute of Computing Technology,

Beijing 100083, China
skylarkspring@gmail.com

Abstract—Vector represents a major category of data managed
by GIS, which is traditionally used for representing geographic
entities such as political borders, roads, rivers and cadastral
information. In this paper we present a key data structure and
associated render-time algorithm for the combined display of
multi-resolution 3D terrain and traditional GIS vector data,
which is designed to create fully 3D scenes that deliver the best
possible quality and do not require dynamic texture generation
and handling. The algorithm allows the system to adapt the
visual mapping to the context and user needs, and enables
users to interactively modify vector through the visual
representation, which represents a basic mechanism for 3D
GIS interface and facilitates the development of visual analysis
and exploration tools.

Keywords-vector; visulazation; terrain; matching;

I. INTRODUCTION

Real-time visualization of large scale terrains has been an
active area of research for more than a decade[1]. In
geographical information systems (GIS), vector data has
important applications in the analysis and management of
virtual landscapes. Therefore, methods that allow combined
visualization of terrain and geo-spatial vector data are
required. These data are typically organized as either raster
or vector data. Vector data represent geometry as lists of
coordinates that define points, lines and polygons. A key
issue in both the computer graphics and the GIS community
is eliminating unnecessary or unwanted detail from the
output image [2]. GIS geometric simplification is one aspect
of the more general methods, which are methods for visually
representing a given geographic entity or set of entities using
different visuals when displaying the entities at different map
scales.

A fundamental task in GIS applications is to render
vector data representing elements such as road networks,
political districts and rivers. Rendering vectors such that they
precisely drape over terrain is challenging. There are two
general approaches to rendering vector data on a 3D mesh.
One option is to convert the vector data to a texture image
layer, and the second option is to render the vector data as
geometric primitives [3]. For a number of reasons, we
believe that vector data should be treated independently from
the image data and therefore should be rendered as separate
geometry by the graphics pipeline [3]. This presents a
challenge because modern algorithms render a LOD terrain
whose constituent triangles are changing at every frame. In
order for the vector data to appear correctly on the 3D mesh,
the vector geometry must therefore also change at each

frame. In addition, Schneider present a method that is based
on stencil shadow volume algorithm and allows high quality
real-time overlay of vector on terrain[4]. The method render
vector using a screen-space algorithm, so can avoid aliasing
artifacts and its performance is almost independent of terrain
geometry.

In this paper, we presents a key data structure and
associated algorithms for overlaying traditional GIS data on
a global, 3D terrain visualization system. Although the 3D
terrain, image layers and 2D vector data are too large to fit
into primary memory. This requires dynamic paging of all
three data types based on the current 3D view of the database.
Finally, we present the results and performance analysis of
the implemented algorithm.

II. MULTI-RESOLUTION DATA GENERATION

For large-scale 3D terrain display, some technologies are
come into mature. Lindstrom presented SOAR algorithm [5]
and Mark presented ROAM algorithm[6], both become
famous algorithm for terrain mesh simplification.

A. Terrain LOD generation

Dealing with huge amounts of data is often a difficult
challenge. The basic data hierarchy on which our approach is
based is the restricted quad-tree, which ensures that the
levels of neighboring quads differ by not more than one. This
is a generic and flexible data structure, and there are multiple
ways to construct consistent triangle meshes from the
hierarchy. It is easy to apply the techniques presented in the
following sections to variants of restricted quad-trees that are
tailored for specific applications.

(a) LOD of terrain (b) Terrain with vector data

Figure 1. A quad-tree structure of Terrain

Simplification algorithms take a terrain model as input
and produce a simplified version of it, which provides a
coarser representation of the same terrain, based on a smaller
data set. Most methods are based on the iterated or
simultaneous applications of local operators that simplify
small portions of the mesh by reducing the number of
vertices. The patch hierarchy is constructed top-down by
subdividing each patch into 2×2 children patches.

Layer 0

Layer 1

Layer 2

Layer 0

Layer 1

Layer 2

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0085

To render the scene, a rendering quad-tree is built that
gives at first, conservative approximation of the necessary
level of detail for different parts of the scene. This quad-tree
determines which quads from the data set quad-trees need to
be used. An initial mesh can be constructed directly from the
rendering tree. This initial mesh is then refined to produce a
tailored mesh that guarantees consistency between
neighboring quads. An overview and example result of the
process is given in Figure 1.

B. Vector data procession

In order to match the DEM data levels from the pyramid
structure, corresponding scales of vector data are required. In
our approach, we use dynamic generation method to satisfy
this requirement. One simple method is to make dense points
of vector objects to be sparse depend its distance from the
viewpoint. In our approach, we adopt method presented by
Sun [7]. As shown in figure 1 (b), where dash line means that
vector data is just indexed but not divided into quad-tree
blocks.

III. TERRAIN MATCHING OF VECTOR

Geometry based methods treat vector data as graphic
objects, and can be classified into points, polylines and
polygons. As a pyramid structure is used for loading terrain
data in real time depend on viewpoint, so at each frame just a
few blocks are refreshed, this make smooth rendering is
feasible when display card has a good capabilities. Generally,
the most time of consumption for geometry based vector
visualization approach spend on triangles searching and
intersection calculation.

A. Point vector matching

Point vector are very common in GIS, such as city name,
label, which cannot be rendered under terrain surface.
Simply disabling depth test or setting render order cannot
display the relative location correctly, especially when the
view point is near from this position.

When high resolution tiles loaded from out-of-memory,
the altitude of the point will be updated using the newest
terrain mesh, and the altitude of the point must be calculated
as soon as possible. For point labels on the ground, set the
triangle contain this point is T, with vertex V0(x0, y0, z0), V1(x1,
y1, z1), and V2(x2, y2, z2), then the equation of the plane of this
triangle can be expressed as:

0

1

1

1

1

222

111

000 =

zyx

zyx

zyx

zyx

Then the altitude of the point can be computed as:

10202010

102020100102020100))(())((
0 yxyx

xzxzyyzyzyxxzz −
−−+−−−= , With

0110 xxx −= ,
0220 xxx −= ,

0110 xxx −= ,
0110 yyy −= 0220 yyy −= ,

0110 zzz −= ,
0220 zzz −= .

B. Polyline vector matching

There is a traditional simplification algorithm, which can
maintain important geometric characteristics of polylines.

However, topological relationships may change, resulting in
topological inconsistencies. A common approach is to render
polylines to a texture, which leads to aliasing as the viewer
zooms in. Rendering polylines on terrain by subdivision of
points along the lines requires adjustment in response to
terrain LOD tiles and the coplanar geometry will lead to z-
fighting [3]. Our approach requires no pre-processing, is
decoupled from terrain LOD, produces high visual quality
constant pixel-width polylines with no cracking or smearing,
has virtually no CPU overhead, allows for dynamic terrain
and polylines, and is simpler to implement than on-demand
texture-based and subdivision methods.

(a) Polygon integration before

mesh operations
 (b) Polygon integration

after mesh operations

(c) Integration results of real terrain with vector

Figure 2. matching process of Polyline vector

First, each point in the polyline is transferred to the
spherical space and duplicated. One is moved away from the
global centre to above the terrain surface and the other below,
forming a vertical line, then a wall across the polyline with
many vertical lines. The intersection of this wall with the
terrain defines the desired polyline. The intersection is found
in screen-space using a fragment shader that has access to the
terrain’s depth and silhouette textures. The tessellation
control fragment shader uses it to decide the subdivision
level of each patch, while the tessellation evaluation shader
uses it to place each generated vertex at the proper height
value. During this stage, we make the best of parallel
character of GPU, then an improvement of performance will
get. If a fragment is in front of the terrain and one of the
surrounding fragments from the wall is behind terrain, a
potential intersection is found. To avoid false positives,
fragments on the terrain’s silhouette are detected using the
silhouette texture and discarded. Our method will not
generate fragments when the wall is viewed on-edge, then a
shadow volume is rendered to handle these cases.

C. Polygon vector matching

The creation of 3D polygon geometry primitives is
complex as it needs to determine it’s inside surface that is
usually not one plane. In order to keep coincident with LOD
tiles of terrain surface, the aim of 3D polygon geometry
creation in our approach is to find triangles of terrain tiles
which are inside and intersect with 2D vector polygon.

The polygon borders are treated in a similar way as the
polylines described above. The interior of the polygon is

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0086

triangulated and added to the new geometry recursively, to
which a z-offset is added in order to avoid interference with
the terrain and rendering artifacts. If the whole vector data
structure is rendered in the frame buffers, each vector feature
is significantly zoomed out, even just occupies several pixels.
In this case, a segment may be occluded by other segments
so that we cannot identify or remove all non-compliant
shortcut segments at a time.

Polygonal data sets such as building blocks, green areas,
forests, and roads are loaded from 2D GIS layer files and
integrated into a custom Constrained Delaunay
implementation for the terrain. The main properties of this
method is, that the shape of the terrain is not altered, and z-
buffer problems do not occur, since the resulting terrain is
still a single continuous surface but with integrated areas that
represent the input 2D shapes. After the geometrical
integration operation we can identify the triangles lying
completely inside the area and mark them as owned by the
GIS layer the polygon comes from.

(a) Polygon integration before

mesh operations
(b) Polygon integration after

mesh operations

Figure 3. matching process of polygon vector

Usually, the short segment formed by two vertices far
away from each other is likely to exceed the e-Voronoi zone.
In that condition, we can just link a vertex with the nearer m
(m is a positive integer) vertices to create shortcut segments.
If the sample interval of the map is small, the variable m
should be set larger. Otherwise, m can be smaller. Compared
with the geometry algorithms, our method preserves
topological consistency efficiently, and avoids dealing with
unnecessary shortcut segments. In the following section, we
present how to keep the topological relationships.

IV. VISUALIZATION OF VECTOR DATA

An obstacle to be tackled is that the detailed geometry
and texture representation of terrain surfaces demands a large
amount of memory. To accomplish the goal for transmission
and rendering of massive geographical maps, our approach
combines view-dependent LOD simplification and out-of-
core rendering algorithm. Fig. 4 illustrates the architecture of
our scheme. The architecture is composed of three
components: the client, the server and the database/files.

When rendering, the client sends the requests to the
server for multi-resolution data falling inside the current
view frustum. The server delivers the base models of the
spatial objects to the client first. Then, the client interacts
with the users and sends the view parameters to the server
for fine models update. The simplification process of the
server produces a stream of map simplification operators.
These update operators are sent to the client and the selective
model is reconstructed and rendered. As the viewers navigate
closer to the interested region, the details will be updated and
refined accordingly. After all the datasets reach the client or

the added details become imperceptible to the viewers, the
process stops.

Figure 4. Flow chart of the rendering process

Eliminating the phenomenon of image popping and
maintaining a higher frame rate of graphics rendering is
always two major problems need to solve for visualization
simulation algorithm of large-scale terrain. For the usage of
very large terrain models, it will be inevitable to use more
than one processor in parallel. Higher demands in memory
capacity, processing speed, drawing speed and transfer
efficiency appear. Multi-thread data loading was used, and
for the usage of very large terrain models, it will be
inevitable to use more than one processor in parallel. On one
hand, independent parts of the landscape can then be updated
independently. On the other hand, only multi-threading will
ensure that the user-interaction and the update-process can be
handled in parallel.

V. RESULTS AND CONCLUSIONS

The approach in this paper has been successfully used for
rendering of 3D vector data in several areas. We
implemented above idea and method in MS visual studio
C++ environment, and tested the performance of our
application, based on low level graphic API, OpenGL, and
the window size is in all cases 1024×768 pixels. We used a
2.66GHz Pentium Dual-Core CPU, with 2GB DDR2 of
RAM, NVIDIA GeForce 9300M GS programmable graphic
card with 256M RAM, and SATA 500G disk.

(a) (b)

(c) (d)

Figure 5. Results of our method

The DEM data set consists of global sample points with
the ground sample distance of 20m, and the image consists
of global data with the test area of resolution of 5m. The test
vector layer includes 8 areas of 3628 sample points and the

Raw vector data

Vector layer
extraction

Vector layer and
block

Vector data

i

Cache buffer on
the disk for

vector layers
and blocks

Loading thread for
vector data
exchanging

Updating thread for
vector data for real

time processing

Vector data
dynamic rendering

Data block
selection

Real time
simplificatio

Visualization
results of

vector

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0087

polyline vector layer includes 144 roads of 18800 sample
points. Before rendering the vector data, the landscape is
rendered at 60 frames per second, after the vector data are
overlaid on the terrain, the rendering speed keeps unchanged,
only the memory cost increases 6.3MB. Figure 5 shows the
rendering result of the habitation (semi-transparent yellow
area) and road (red line) data on the 3d terrain landscape.

Rendering vector data can enhance many invisible
information in 3D landscape map, and made 3D landscape
map more close to a 3DGIS. Both pyramid structure and
index of quad-tree can improve large-scale vector data of
multiple scales to be load easily in real time. In order to
overcome expensive computation of real time intersection of
terrain mesh with vector line segments, this paper presents a
framework and correlative approach for rendering large scale
geographical data efficiently, including terrain grid and
vector data. Using GPU based graphics hardware; we
achieve vector data simplification efficiently. Based on the
simplification, we establish LOD vector models. Finally, we
implement dynamically reconstruction of large scale terrain
with all types of vector data. We are going to further improve
the algorithm as proposed in this paper. The future work
includes (1) storing vector layers and blocks with different
relative importance with a hierarchical data structure, (2)
adapting the animation speed to the viewpoint moving speed,
and (3) incorporating textures layers into the real-time
rendering system.

REFERENCES
[1] Nie, J., et al., Multilevel tile load map on massive terrain visualization.

Journal of Computational Information Systems, 2011. 7(2): p. 452-
461.

[2] Zhang, Y., Q. Huang, and J. Han. Real-time rendering of large-scale
terrain based on GPU. in 4th IEEE Conference on Industrial
Electronics and Applications. 2009. Xi'an, China: IEEE Computer
Society, 445 Hoes Lane - P.O.Box 1331, Piscataway, NJ 08855-1331,
United States.

[3] Agrawal, A., M. Radhakrishna, and R.C. Joshi, Geometry-based
Mapping and Rendering of Vector Data over LOD Phototextured 3D
Terrain Models. The 14th International Conference in Central Europe
on Computer Graphics, Visualization and Computer Vision, Plzen-
Bory, Czech Republic, 2006, 2006.

[4] Schneider, M. and R. Klein, Efficient and Accurate Rendering of
Vector Data on Virtual Landscapes. 2007.

[5] Lindstrom, P. Out-of-core construction and visualization of
multiresolution surfaces. in ACM SIGGRAPH 2003 Symposium on
Interactive 3D Graphics. 2003. Monterey, CA, United states:
Association for Computing Machinery.

[6] Duchaineau, M., et al. ROAMing terrain: real-time optimally
adapting meshes. in Proceedings of the IEEE Visualization
Conference. 1997. Phoenix, AZ, USA: IEEE Comp Soc, Los
Alamitos, CA, United States.

[7] Sun, M., 3D Visualization Method of Large-scale Vector Data for
Operation. In Proceeding of the Fourth International Conference on
Cooperative Design, Visualization and Engineering, 2007, Shanghai,
2007.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0088

