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Abstract—Most seat control models rely on the concept of 
marginal seat revenue and the assumption of risk neutrality to 
develop an policy to solve this kind of problem. For the 
multi-leg dynamic seat control problem ,this study proposed a 
modified multi-leg policy to take risk into consideration by 
discounting the marginal seat revenue and using the virtual 
bucket .The effectiveness of the modified policy was examined 
by a series of simulation experiments. The simulation analysis 
shows that the model can balance the expected revenue and 
revenue variation. 

Keywords-seat control models, riskneutrality, multi-leg, 
virtualbucket, simulation. 

I. INTRODUCTION 

The airline seats optimization means selling the 
appropriate seat to the right person at the right time.If the 
airline seats are all sold at the cheap price. Therefore, the 
purpose of optimization of airline seats is allocated 
reasonable ticket protection seat numbers for the different 
levels of fares so as to gain the maximization of the flight 
revenue. 

Today airline seatsoptimal control method is mainly 
theexpected marginal seat revenue( EMSR) theory which 
proposed by the Professor Peter P.Belobaba in his doctoral 
thesis. This theory was quickly adopted by many airline 
company including PROS and other multiple software 
systems. But EMSR has two disadvantages, First, a 
reservation limit that EMSR produced cannot change as 
thereservation process state change, which called the 
drawback of static characteristics. The second is not 
considered the risk in the decision-making process. For 
these two drawbacks, foreign countries has proposed the 
discount of expected marginal revenuethinking, but this 
method is applied only in the single-leg. For the multi-leg 
problem has not a solution to this. Recent years the 
multi-leg problem's solution is to use the virtual bucket, 
sothis study propose a model using the virtual bucket and 
the discount thinking to solve this problem. 

II. BACKGROUND AND PRIOR RESEARCH 

A. Original Discounted Marginal Seat Value 

One of the policies which Huang and Chang (2009) 
propose is the relaxation of optimalityfor a more 
risk-sensitive policy. They show in a numerical experiment 
the behavior of thispolicy in terms of average and standard 
deviation. This policy discounts the marginal seatvalue. Its 
value function is 

V௡ఉ ൌ൝ ௜ݎ ൅ ∑ ௜௡݌ ௡ܸିଵఉ ሺܿ െ 1, ݅ሻݎ௜ ≫ ߚ ∙ ௏೙షభഁߜ ሺܿ, ݅ሻ௞௜ୀ଴∑ ௜௡݌ ௡ܸିଵఉ ሺܿ െ 1, ݅ሻ௞௜ୀ଴ 																																								otherwise(1) 

βisa discount factor which ranged in [0,…,1]And the 
decision rules is 

௡݂ఉሺܿ, ݅ሻ ൌ ൝1, ௜ݎ ≫ ߚ ∙ ௏೙షభഁߜ ሺܿ, ݅ሻ0, ௜ݎ ൏ ߚ ∙ ௏೙షభഁߜ ሺܿ, ݅ሻ  (2) 

B. Discounted Marginal Seat Value within Risk-Neutral 
Solution 

The idea in 2.1 using the marginal seat value is based on 
previous discount calculation result which will decrease the 
value largely in several accumulations. So this solution 
work directly with the marginal seatvalue with a prior 
computed risk-neutral value function. Thus, the 
decisionrules do not depend on previous ’discounted’ 
decisions. 

The modified decision rules is as followed, 

௡݂ఉ，୴ሺܿ, ݅ሻ ൌ ቊ1, ௜ݎ ≫ ߚ ∙ ∗௏೙షభߜ ሺܿ, ݅ሻ0, ௜ݎ ൏ ߚ ∙ ∗௏೙షభߜ ሺܿ, ݅ሻ(3) ߜ௏೙షభ∗ ሺܿ, ݅ሻIs the marginal seat value within risk-neutral 
solution at stage n-1 when the residual seat is c and required 
class level is i.The value function V௡ఉwould be transformed 
similarly toobtainV௡ఉ,୴. 

C. Selling-Rate Dependent Decisions 
The discount ߚ in different stage should be a different 

value, so the model before is not a realistic one. So this 
solution is the time- and seat-dependent compromise policy 
of Huang and Chang(2009). It uses a hyperbolic tangent 
function and two variable parameter ݇ଵ  and ݇ଶwhichdetermine the level of risk-sensitive behavior in 
dependence on the number of remainingseats before 
departure. The discount factor ߚ௡௞భ,௞మሺܿሻis computed as ߚ௡௞భ,௞మሺܿሻ ൌ ଵଶ ሺ݊ሻݍ൫݇ଵሺ݄݊ܽݐൣ ൅ ݇ଶ െ ܿሻ൯ ൅ 1൧(4) tanhሺݔሻ ൌ ௘ೣି௘షೣ௘ೣା௘షೣ(5) qሺ݊ሻ ൌ ܥ ∑ ∑ ௥೔௣೔೙ೖ೔సభ೙೘సభ∑ ∑ ௥೔௣೔೙ೖ೔సభ೘ಿసభ (6) 

 ݇ଵ :a pre-determined constant representing the 
rate of decision change.݇ଵWas chosen as 0.3. 
 ݇ଶ:An adjustable parameter representing the level 

of risk-aversion in range[2,5]. 

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France. 
© the authors 

0114



III. MODEL AND POLICIES DESCRIPTION 

A. model description 

This studyusesMarkov decision processes as a dynamic 
decision-making booking process. 

A Markovdecision-making process, includingthestate 
space, action set, decisionepochs, rewards and transition 
probabilities.Inthestudyherein, which are defined as 
follows: 

• State space S= {0, 1…C}× {0, 1…k}, wherethe first 
element stands for the remaining seat capacity and the 
second element for the fare class, with artificialfare class 
0with fare F0 = 0. A state (c, i) says that as c seats are 
remaining, we have a requestfor fareclass i. 

• Action set:Aሺܿ, iሻ ൌ ሼ0,1ሽ, ∀ሺܿ, iሻ ∈ ܵ|i ൐ 0, ,ሺܿܣ 0ሻ ൌሼ0ሽ,Represents the ’reject’ and ’accept’ decision for a given 
state. 

• Decision epochs correspond to the time periods: 
T={0,1,..N},N represents the departure of flight,0 is the 
start of booking. 

• transition probabilities:ݍ௡൫ሺܿ, iሻ, a, ሺܿ െ a, jሻ൯ ൌ  ௝௡݌
• Rewards:ݎ௡൫ሺܿ, iሻ, a൯ ൌ a ∙ ,௜ݎ c ൐ 0 
Combined discount idea and virtual bucket, first we 

should divide the bucket according to the multi-leg fares, 
and then put the bucket to the corresponding leg. Eventually 
we calculate the expected marginal seat value at every stage 
according to one of three method above. 

The protection number function is as follows: ݕ௜ିଵ∗ఉ ൌ ݔܽ݉ ቄݎ௜ ൏ ∑ ௜௡݌ ቀ ௡ܸିଵఉ ሺܿ, ݅ሻ െ ௡ܸିଵఉ ሺܿ െ௞௜ୀ଴1, ݅ሻቁቅ c ∈ ଴ܰ (7) 

B. The division of stage and the transition probabilities’ 
setting 

• The booking time is divided into a series of short time, 
andin each time intervalthe passenger arrival process 
follows a Poisson distribution. 

• Each interval was set a number n, n=1,2,3…h. 
Timeinterval1on behalf of the end of booking time,time 
intervalhon behalf of the beginning of booking. 

• Since the model assumes that each decision interval at 
most only one tourist arrivals,so each time interval 
described above is divided into intervals of the decisions 
required by the model.μ୬୩Means the expected arrivals in 
stage n required class level k.Each class level’s expected 
arrivals in every stage satisfies the following formula:μ୬ ൌ
μଵ୬ ൅ μଶ୬ ൅⋯൅ μ୩୬, Each time interval travelers arrive meet 
the Poisson distribution with mean	μ୬. 

• The interval n is divided into ݒ௡  decision short 
interval of equal length.Passengers arrival in each short 

interval meet the Poisson distribution with meanߤ௡ ௡ൗݒ ,and 
the most important part is each interval at most arrive one 
passenger. 

• ε	 is a very small probability value which can be 
negligible, thenv୬ must satisfy the formulaPሺݔ ≫ 2ሻ ൏  ,ߝ
where x is a random number, representing thenumber of 
passengersarriving withina decisioninterval.Because each 

interval meet the Poisson distribution with meanμ
୬ v୬ൗ ,then v୬  should 

satisfy:1 െ exp ቀെ μ౤୴౤ቁ െ ሺμ୬ v୬⁄ ሻexp ቀμ୬ v୬ൗ ቁ ≪ ε 

• Calculate the passenger arrival’s probability of each 
decision interval. Because passengers arrival meet the 
Poisson distribution 
withmean μ୬ v୬⁄ , P୩ሺnሻ ൌ ሺμ୬ v୬⁄ ሻexpሺെ μ୬ v୬⁄ ሻ , P୩ሺnሻ 
means a passenger arrive requiring class level k at stage n. 

IV. NUMERICAL SIMULATION AND RESULTS 

This study uses the domestic airline Nanjing (A) --- 
Shenzhen (B) --- Sanya (C) routes data to do the simulation. 
Each ODF has two class level fares,The aircraft available 
seat number is 140, and there are three segments, AB, 
AC,BC.ODF fares and demand information is as shown in 
Table 1. 

Table 1 ODF fares and demand information 
ODF ABY ABB ACY ACB BCY BCB

fare 1000 800 1200 960 400 320

demand 42 66 35 50 41 71 

Because the ODF is not too much, so we take each fare 
as a bucket.Then there are 6 virtual buckets. For 
experimental data,the results of bucket division are as 
follows in Table 2: 

Table 2 the result of bucket division 

AB bucket ODF class fare BC bucket ODF class fare 

1 ACY 1200 1 ACY 1200

2 ABY 1000 2 ACB 960 

3 ACB 960 3 BCY 400 

4 ABB 800 4 BCB 320 

Because passengers arrival meet nonhomogeneous 
Poisson distribution, so we can get the probabilityand the 
number of passengers arrival at each stage according to the 
section 2.3.In our case, the stimulation result are as follows: 

Table 3 Probabilities of passengers arrival 

stage ACY ABY ACB ABB BCY BCB 

0-180 0.037 0.042 0.011 0.016 0.027 0.011

181-360 0.027 0.032 0.016 0.027 0.027 0.022

361-510 0.025 0.032 0.019 0.019 0.032 0.026

511-660 0.019 0.025 0.019 0.025 0.025 0.025

661-840 0.016 0.021 0.021 0.027 0.021 0.032

841-990 0.019 0.019 0.025 0.032 0.025 0.038

991-1170 0.016 0.016 0.027 0.037 0.016 0.042

1171-1350 0.010 0.016 0.032 0.037 0.016 0.042

1351-1550 0.010 0.010 0.029 0.038 0.014 0.043

1551-1750 0.010 0.010 0.029 0.043 0.014 0.047

1751-1950 0.005 0.010 0.038 0.047 0.019 0.010

Table 4 the situation of Passengers arrival 

ODF It has a arrival at interval t 
ABY 48,55,67,71,84,93,173,200,208,217,232,247,260,262,333,398,413,

435,444,461,504,521,533,544,547,560,594,642,661,703,783,869, 
999,1004,1071,1103,1120,1163,1217,1221,1276,1302,1322,1383, 
1438,1536,1618,1693,1737,1763,1828,1919 

ABB 79,148,177,223,228,258,266,314,354,411,428,448,483,484,498,577,
628,709,712,732,756,789,817,833,853,862,868,935,991,1019,1106, 
1187,1193,1219,1230,1317,1319,1335,1336,1401,1409,1424,1483, 
1492,1506,1520,1537,1538,1647,1673,1677,1684,1710,1747,1782, 
1788,1806,1840,1842,1846,1853,1866,1867,1893,1905,1914,1942, 
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ACY 11,30,31,46,74,89,90,96,127,214,219,246,265,337,359,409,447,477,
489,492,526,530,561,602,607,608,635,648,689,701,832,854,889,917, 
925,933,939,982,1026,1107,1207,1471,1597,1751,1845 

ACB 116,321,433,456,497,571,600,625,636,691,696,720,729,791,830,846,
888,988,1042,1052,1129,1226,1255,1282,1315,1329,1330,1368,1388,
1407,1488,1531,1535,1727,1739,1755,1767,1778,1834,1874,1878, 
1922,1923,1936,1943 

BCY 17,24,65,92,215,251,285,295,303,341,345,367,368,387,422,424,458,
462,469,488,494,511,546,651,656,700,704,719,731,735,823,855, 
914,920,937,951,973,983,1032,1047,1114,1120,1229,1235,1236, 
1269,1289,1405,1616,1654 

BCB 18,292,334,374,382,468,474,524,615,641,713,761,812,816,842,852,
865,877,885,913,964,974,1003,1025,1046,1049,1059,1118,1125, 
1132,1160,1180,1184,1207,1234,1266,1311,1341,1342,1343,1380, 
1394,1399,1454,1470,1509,1512,1517,1519,1530,1560,1623,1682, 
1697,1713,1731,1775,1799,1813,1823,1850,1856,1865,1882,1891, 
1902,1912,1924,1932,1934,1945 

A. Original Discounted Marginal Seat Value simulation 
The discount factor β was set from 0.8 to 0.9 which 

was a reasonable arrangement. First we set	β ൌ 0.9. 
Segment AB’s and BC’s protection level is as shown: 

 
Fig 1:Segment AB’s and BC’s protection level We	 changed	 the	 factor	 β	 to	 0.8,so	 we	 can	 get	 the	different	result	as	follows:	

	
              Fig 2: Segment AB’s and BC’s protection level 

The contrast between 0.8 and 0.9,we get that when the 
discount is low, the decision-making strategies 
approximates FCFS. 

B. Discounted Marginal Seat Value within Risk-Neutral 
Solution simulation 

β ൌ 0.9, the result is as follows: 

	
   Fig3: Segment AB’s and BC’s protection level 

    β ൌ 0.8, the result is as follows: 

 
  Fig4: Segment AB’s and BC’s protection level 

C. Selling-Rate Dependent Decisions simulation 
In this model we set݇ଵ ൌ 0.3,݇ଶ ൌ 5, the simulation of 

segment AB,BC is as follows: 

 
Fig5: Segment AB’s and BC’s protection level 

D. Contrast among three methods 
We named this three methods orderly as method 1, 

method 2, method 3, the result of contrast is shown : 
Table 10 Booking result contrast 

Method(ࢼ) ABY ABB ACY ACB BCY BCB revenu 

Method1(૙. ૡ) 27 50 23 40 8 37 149240

Method1(૙. ૢ) 37 32 30 41 8 36 152680

Method2(૙. ૡ) 31 44 25 40 8 36 149320

Method2(૙. ૢ) 36 22 40 42 8 26 153440

Method3 39 18 42 41 6 14 152040

From this result we can find the method 2(ࢼ ൌ ૙. ૢ) is 
the best, but the booking result is depend on the passengers’ 
arrival situation. When the situation of arrival is changed, 
the total revenue will change too. So we can’t tell which 
risk-aversion method is the best, but we can get which one 
is realistic. This study’s purpose is to propose a strategy and 
give a result of allocation which result will change as the 
arrival situation changed. 

V. CONCLUSION 

This paper first combined the discount thinking and the 
virtual bucket using the Markov decision process to solve 
the multi-leg seat allocation problem. And using the 
Non-homogeneous Poisson distribution we stimulate the 
passengers’arrival. We experiment this three methods, we 
are not to illustrate which method is good, but in order to 
provide a strategy of this case. Because of taking the risk 
into this by discount the expected marginal seat value, we 
break the constraint of purely rational decision, which is 
more realistic. 
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