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Abstract—Traditionally, distributed system software 
developers print log messages when creating a program to 
track the runtime status of a system to help identify where 
problems may have occurred while the program is running. 
People often use system logs produced by distributed systems 
for troubleshooting and problem diagnosis. However, there 
may be thousands of failed jobs occurring within a short time. 
Manually inspecting these jobs one by one to detect anomalies 
is unfeasible due to the increasing scale and complexity of 
distributed systems. Since many failed jobs may have the same 
cause, there is a great demand for automatic job categorization 
techniques based on log analysis to help developers prioritize 
job investigation. Described herein is an unstructured log 
analysis technique for job categorization. In the technique, we 
propose a novel algorithm to categorize log messages into 
different categories without heavily relying on application 
specific knowledge, based on which jobs can be categorized. 

Keywords-log analysis; job clustering; message 
categorization; problem diagnosis 

I.  INTRODUCTION 

Large scale distributed systems are becoming key 
engines of IT industry. For a large commercial system, 
execution anomalies, including erroneous behavior or 
unexpected long response times, often result in user 
dissatisfaction and loss of revenue. These anomalies may be 
caused by hardware problems, network communication 
congestion or software bugs in distributed system 
components. Most systems generate and collect logs for 
troubleshooting, and developers and administrators often 
detect anomalies by manually checking system printed logs. 
However, as many large scale and complex applications are 
deployed and many failed jobs may occur within a short time, 
manually detecting anomalies becomes very difficult and 
inefficient. At first, it is very time consuming to diagnose 
through manually examining a great amount of log messages 
produced by a large scale distributed system. Secondly, a 
single developer or system administrator may not have 
enough knowledge of the whole system, because many large 
enterprise systems often make use of Commercial-Off-the-
Shelf components (e.g. third party components). In addition, 
the increasing complexity of distributed systems also lowers 
the efficiency of manual problem diagnosis further. 
Therefore, developing automatic job categorization tools 
becomes an essential requirement of many distributed 
systems to help developers prioritize job investigation and 
ensure the Quality of Service. 

Assumptions: When a failed job occurs, its 
corresponding log file always contains some exception 
messages which may partly explain the causes of the 
anomaly. We name these exception messages as TRAP 
messages. In the technique, job categorization is based on the 
TRAP messages in the corresponding log files. We assume 
that each log message has a corresponding time stamp that 
indicates its generation time. We further assume that the logs 
are recoded using thread IDs or request IDs to distinguish 
logs of different threads or work flows. Most modern 
operating systems (such as Windows and Linux) and 
platforms (such as Java and .NET) provide thread IDs. We 
can therefore work with sequential logs only. In addition, we 
assume that each log entry contains a job ID property, which 
records which job the log entry belongs to. 

This technique contains the following steps: exception 
message preprocessing, exception message categorization by 
log key, and job categorization by job signature. Besides, 
during exception message categorization, we can do 
exception message category significance evaluation and key 
object analysis. 

II. EXCEPTION MESSAGE PREPROCESSING 

As in a distributed system, many workflows may run 
simultaneously for a job, the log file generated by the 
corresponding job probably contains interleaving log 
messages of different work flows. What’s more, the log file 
of a job may contain some log messages that do not actually 
written by this job. Then these log messages are noisy 
messages of the log file. In addition, an exception of a job 
often triggers other exceptions, which will also be written in 
the corresponding log file. Then these exception messages 
are actually redundant messages of its log file. Therefore, it 
is necessary to do log messages preprocessing of original log 
files. We take PowerShell logs for example. 

A. Remove noisy messages 

A log file of a job may contain some noisy messages that 
actually should not belong to this job. This is because in a 
distributed system, many jobs run simultaneously and if any 
log entry does not record the correct job ID, it will probably 
be written into a log file which is actually another job. An 
example is as “TABLE I”. 
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TABLE I.  An example of a log file 

Process 
Id 

Thread 
Id 

Job 
Id 

Message Machine
Name 

6496 25 105510

60 

Execute 

job for 

execution. 

Machine

Name1 

7860 4 -1 The job 
has been 
ready. 

Machine
Name2 

6496 25 105510
60 

Updating 
build 

version. 

Machine
Name1 

6496 25 -1 TRAP: …
… 

Machine
Name1 

7860 4 -1 TRAP: …
… 

Machine
Name2 

 
“TABLE I” is part of log entries of a log file 

“10551060.log”. Of the properties in the log, “ProcessId”, 
“ThreadId” and “MachineName” together distinguish 
different workflows. In the example above, there are two 
different threads: “6495, 25, MachineName1” and “7860, 4, 
MachineName2”.  

The noisy message removing rule is that if no log entry 
of a certain work flow contains the correct job ID that is the 
same with the job name without extension, then we consider 
the messages of this thread as noisy messages. In the 
example above, all JobIds of “7860, 4, MachineName2” 
workflow are “-1”, then we consider the messages of “7860, 
4, MachineName2” work flow as noisy messages and they 
should be removed. 

After the processing, the remaining log entries are as 
“TABLE II”. 

TABLE II.  Log entries after removing noisy messages 

Process 
Id 

Thread 
Id 

Job 
Id 

Message Machine
Name 

6496 25 105510
60 

Execute job 
for 

execution. 

Machine
Name1 

6496 25 105510
60 

Updating 
build 

version. 

Machine
Name1 

6496 25 -1 TRAP: …… Machine
Name1 

B. Remove redundant TRAP messages 

After removing noisy messages, we need to remove 
redundant TRAP messages of the log file. For example, a log 
file has the following TRAP messages after removing noisy 
messages: 

 
a. TRAP: Retry exception: [MACHINE: 

MachineName1: TRAP: Exception [Exception:Failed to 
adjust User Rights permissions. TRAP_DETAILS: 
ErrorFile [C:\ Common\Collection.ps1], ErrorLine [1495:         

throw $errorRecord]. TRAP_ACTION: Rethrow.]. 
TRAP_ACTION: Job 1024232 will retry. 

b. TRAP: Exception [Exception:Failed to adjust 
User Rights permissions. TRAP_DETAILS: ErrorFile [C:\ 
Common\Collection.ps1], ErrorLine [1495:         throw 
$errorRecord]. TRAP_ACTION: Rethrow. 

 
We can find that the longer TRAP message contains 

exactly the shorter TRAP message. We consider the shorter 
TRAP as the root exception of the job and consider the 
longer TRAP message as redundant TRAP message. 

The redundant TRAP message removing rule is that if a 
certain TRAP message, recorded as “Trap1”, contains any 
one TRAP message of this log file whose length is shorter 
than the length of “Trap1”, then we consider “Trap1” as a 
redundant TRAP message and “Trap1” needs to be removed 
from the log file. 

After removing redundant TRAP messages, the example 
above has the remaining TRAP: 

 
TRAP: Exception [Exception:Failed to adjust User 

Rights permissions. TRAP_DETAILS: ErrorFile 
[C:\Common\Collection.ps1], ErrorLine [1495:         throw 
$errorRecord]. TRAP_ACTION: Rethrow. 

C. Replace nested TRAP with its inner layer TRAP 

After removing redundant TRAP messages of a log file, 
if there are still nested TRAP messages remained, we need to 
replace them with their inner layer TRAP messages. For 
example, a log file has the following TRAP message after 
removing redundant messages: 
 

TRAP: Retry exception: [MACHINE: MachineName1: 
TRAP: Exception [Exception:Failed to adjust User Rights 
permissions. TRAP_DETAILS: ErrorFile 
[C:\Common\Collection.ps1], ErrorLine [1495:         throw 
$errorRecord]. TRAP_ACTION: Rethrow.]. 
TRAP_ACTION: Job 1024232 will retry. 

 
We can find that the TRAP message is a nested one. We 

consider the inner layer TRAP as the root cause of the TRAP 
and replace the TRAP with its inner layer TRAP. 
Accordingly, the rule of this process is that if a TRAP 
message is a nested one, we replace the message with its 
inner layer TRAP. 

After replacing nested TRAP with its inner layer TRAP, 
the example above has the remaining TRAP: 

 
TRAP: Exception [Exception:Failed to adjust User 

Rights permissions. TRAP_DETAILS: ErrorFile 
[C:\Grid\Common\Collection.ps1], ErrorLine [1495:         
throw $errorRecord]. TRAP_ACTION: Rethrow. 

III. EXCEPTION MESSAGE CATEGORIZATION 

Although there may be a considerable amount of 
exception messages in failed job logs, probably many of 
these exception messages are printed out by the same source 
code statement. We consider the messages that are printed 
out by the same source code statement as the same category. 
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If we categorize the exception messages into different 
categories, we can further extract parameters of each 
exception messages. These parameters may point out the 
object that goes wrong, which may be a website, a server ID, 
etc. We also take PowerShell logs for example to explain 
how to do exception message categorization. 

A. TRAP message categorization by edit distance 

a. Calculate edit distances of each two TRAP 
messages 

Given two character strings and, the edit distance 
between them is the minimum number of edit operations 
required to transform into. Most commonly, the edit 
operations allowed for this purpose are: (i) insert a character 
into a string; (ii) delete a character from a string and (iii) 
replace a character of a string by another character. Herein 
we take a word of an exception message as a character to 
calculate the edit distance. For example, the edit distance of 
the string “I am David” and “I am John” is 1, not 5. We take 
a word as an edit distance unit because the edit distance 
calculated in this way can better reflect the degree of 
similarity of two exception messages. After this step, we can 
get the edit distances of each two TRAP messages. 

b. Analyze these edit distances and set a threshold 
value 

We need to set a threshold value of edit distances to 
judge whether any two TRAP messages are of the same 
category. That is, the edit distance between each pair of 
exception messages in the same group should be smaller than 
a distance threshold. The idea of automatically determining 
the threshold is that Intra-class distances and Inter-class 
distances should be quite different. Based on such idea, we 
use Gaussian mixture model to obtain the threshold.  

 
Figure 1. Gaussian mixture model 

As “Fig. 1”, there are three groups of exception messages. 
However, we do not know which ones belong to the same 
group in advance. Next, we compute distance of each pair of 
messages, and obtain a set of distance. We use the Gaussian 
mixture model to fit the distance distribution. The left and 
right Gaussian components correspond to intra-class distance 

and inter-class distance. Therefore, we can automatically 
determine the threshold. (Refer to “(1)”)  

                   (1) 
          (Th is the threshold of distance) 

It should be pointed out that different kinds of exceptions 
usually have very different messages. They can usually be 
discriminated with high accuracy. 

c. Categorize TRAP messages depending on the 
threshold value 

If the edit distance of two TRAP messages is lower than 
the threshold value set in the last step, then we consider these 
two TRAP messages are of the same category, through 
which we can categorize TRAP messages into different 
categories. 

Herein we give a real example to show the process of 
TRAP message categorization by edit distance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B. Common sub-string extraction 

After the automatic TRAP message categorization, we 
need to extract the common sub-strings of each category 
before parameter extraction. 

a. Extract the preparatory longest common sub-string 
of each category 

This is implemented by LCS standard algorithm. We also 
take a word of a string as the unit for the LCS algorithm. For 
example, the longest common sub-string of “Failed to 
connect database server SQL020” and “Failed to connect 
database server SQL023” is “Failed to connect database 
server”. 

b. Extract the accurate longest common sub-string of 
each category 

After extracting the preparatory LCS by the LCS 
algorithm, there may also be potential parameters in the 
preparatory LCS. We need to remove these parameters in 

The edit distances of each two TRAP messages are as 
follows. 

 Trap1 Trap2 Trap3 Trap4
Trap1 0    
Trap2 1 0   
Trap3 15 16 0  
Trap4 13 15 2 0 

 

We sort the edit distances above: 1, 2, 13, 15, 15, 16. 
We can find that there is a great gap between the 
higher values and the lower ones. We use the Gaussian 
mixture model to set the threshold value as 5. 

If the edit distance of two TRAP messages is smaller 
than the threshold value, then they are of the same 
category. 
So the result of categorization of the example above is:
 1st category: Trap1, Trap2; 
 2nd category: Trap3, Trap4. 
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LCS and get the accurate longest common sub-string of each 
TRAP message category. It is necessary to write a 
configuration file that stores the possible parameter patterns. 
And we compare the preparatory LCS with the parameter 
patterns in the configuration file. We remove the sub-strings 
that can match any of the parameter patterns and get the 
accurate LCS. 

c. Extract the common sub-strings of each category by 
LCS 

After we get the accurate LCS, we compare the LCS with 
each TRAP message of the category. Then we can extract the 
common sub-strings separated by the possible parameters 
and the different parts of TRAP message of this category. 
The common sub-strings can be used to extract parameter of 
each TRAP message. 

C. Parameter extraction 

After we get the common sub-strings of each category, 
we can extract the parameters of each trap message. 

a. Extract the possible parameters by comparing each 
trap message with common sub-strings 

We consider the string between each two neighbor 
common sub-strings as a possible parameter. 

b. Compare each possible parameter with parameter 
patterns in configuration file 

If the possible parameter matches a parameter pattern, 
then the substring that exactly matches the pattern is printed 
out. Otherwise, we take the whole parameter string as a 
parameter. 

IV. JOB CATEGORIZATION 

Each failed job log file probably contains some exception 
messages. All exception messages of all failed job log files 
are categorized after exception message categorization. If a 
job log file contains the same set of exception message 
category with another one, then the two job log files are of 
the same job category. We call the set of exception message 
category of each job as “job signature”. We consider the jobs 
whose job signatures are the same as the same job category. 

For example, if we have got the job signature of each job: 
• Job1: 

{TRAP category1, TRAP category2, TRAP category3} 
• Job2: 

{TRAP category4, TRAP category3, TRAP category1} 
• Job3: 

{TRAP category3, TRAP category4, TRAP category1} 
• Job4: 

{TRAP category2, TRAP category1, TRAP category3} 
We can see that Job1 and Job4 have the same job 

signature. In addition, Job2 and Job3 have the same job 
signature. So finally we can categorize these job logs into 
several job categories: 
• Job Category1: {Job1, Job4} 
• Job Category2: {Job2, Job3} 

V. EXCEPTION MESSAGE CATEGORY 

SIGNIFICANCE EVALUATION 

Exception message category significance can be 
evaluated by the following standards. 
• Job occurrence number 

- The total number of jobs where a message of the 
exception message category occurs. 
• Job category occurrence number 

- The total number of job categories where a message 
of the exception message category occurs. 
• Message occurrence number 

- The total number of message occurrence that 
belongs to the exception message category. 

VI. KEY OBJECT ANALYSIS 

Key object parameter patterns are predefined in a 
configuration file, such as database server “SQL024”, 
application server “App007”. These parameters may occur in 
different job log files. By doing key object statistics, we can 
get job distribution situation on corresponding parameters.  

We get the parameter statistics from the step of parameter 
extraction. 

The parameter statistics results of some actual provision 
logs are as “TABLE III”. 

TABLE III.  The top 3 suspicious “database server” 

Database server 
name

Number of 
suspended jobs 

Percentage 
in all jobs

SQL027 218 24% 
SQL021 33 4% 
SQL023 32 4% 
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