
Failure Categorization for Problem Diagnosis on Exception-Based Software Systems

Shuhai Li
School of Computer Science and Engineering

Beihang University
Beijing, China

e-mail: SebertHai@gmail.com

Abstract—Traditionally, distributed system software
developers print log messages when creating a program to
track the runtime status of a system to help identify where
problems may have occurred while the program is running.
People often use system logs produced by distributed systems
for troubleshooting and problem diagnosis. However, there
may be thousands of failed jobs occurring within a short time.
Manually inspecting these jobs one by one to detect anomalies
is unfeasible due to the increasing scale and complexity of
distributed systems. Since many failed jobs may have the same
cause, there is a great demand for automatic job categorization
techniques based on log analysis to help developers prioritize
job investigation. Described herein is an unstructured log
analysis technique for job categorization. In the technique, we
propose a novel algorithm to categorize log messages into
different categories without heavily relying on application
specific knowledge, based on which jobs can be categorized.

Keywords-log analysis; job clustering; message
categorization; problem diagnosis

I. INTRODUCTION

Large scale distributed systems are becoming key
engines of IT industry. For a large commercial system,
execution anomalies, including erroneous behavior or
unexpected long response times, often result in user
dissatisfaction and loss of revenue. These anomalies may be
caused by hardware problems, network communication
congestion or software bugs in distributed system
components. Most systems generate and collect logs for
troubleshooting, and developers and administrators often
detect anomalies by manually checking system printed logs.
However, as many large scale and complex applications are
deployed and many failed jobs may occur within a short time,
manually detecting anomalies becomes very difficult and
inefficient. At first, it is very time consuming to diagnose
through manually examining a great amount of log messages
produced by a large scale distributed system. Secondly, a
single developer or system administrator may not have
enough knowledge of the whole system, because many large
enterprise systems often make use of Commercial-Off-the-
Shelf components (e.g. third party components). In addition,
the increasing complexity of distributed systems also lowers
the efficiency of manual problem diagnosis further.
Therefore, developing automatic job categorization tools
becomes an essential requirement of many distributed
systems to help developers prioritize job investigation and
ensure the Quality of Service.

Assumptions: When a failed job occurs, its
corresponding log file always contains some exception
messages which may partly explain the causes of the
anomaly. We name these exception messages as TRAP
messages. In the technique, job categorization is based on the
TRAP messages in the corresponding log files. We assume
that each log message has a corresponding time stamp that
indicates its generation time. We further assume that the logs
are recoded using thread IDs or request IDs to distinguish
logs of different threads or work flows. Most modern
operating systems (such as Windows and Linux) and
platforms (such as Java and .NET) provide thread IDs. We
can therefore work with sequential logs only. In addition, we
assume that each log entry contains a job ID property, which
records which job the log entry belongs to.

This technique contains the following steps: exception
message preprocessing, exception message categorization by
log key, and job categorization by job signature. Besides,
during exception message categorization, we can do
exception message category significance evaluation and key
object analysis.

II. EXCEPTION MESSAGE PREPROCESSING

As in a distributed system, many workflows may run
simultaneously for a job, the log file generated by the
corresponding job probably contains interleaving log
messages of different work flows. What’s more, the log file
of a job may contain some log messages that do not actually
written by this job. Then these log messages are noisy
messages of the log file. In addition, an exception of a job
often triggers other exceptions, which will also be written in
the corresponding log file. Then these exception messages
are actually redundant messages of its log file. Therefore, it
is necessary to do log messages preprocessing of original log
files. We take PowerShell logs for example.

A. Remove noisy messages

A log file of a job may contain some noisy messages that
actually should not belong to this job. This is because in a
distributed system, many jobs run simultaneously and if any
log entry does not record the correct job ID, it will probably
be written into a log file which is actually another job. An
example is as “TABLE I”.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0122

TABLE I. An example of a log file

Process
Id

Thread
Id

Job
Id

Message Machine
Name

6496 25 105510

60

Execute

job for

execution.

Machine

Name1

7860 4 -1 The job
has been
ready.

Machine
Name2

6496 25 105510
60

Updating
build

version.

Machine
Name1

6496 25 -1 TRAP: …
…

Machine
Name1

7860 4 -1 TRAP: …
…

Machine
Name2

“TABLE I” is part of log entries of a log file

“10551060.log”. Of the properties in the log, “ProcessId”,
“ThreadId” and “MachineName” together distinguish
different workflows. In the example above, there are two
different threads: “6495, 25, MachineName1” and “7860, 4,
MachineName2”.

The noisy message removing rule is that if no log entry
of a certain work flow contains the correct job ID that is the
same with the job name without extension, then we consider
the messages of this thread as noisy messages. In the
example above, all JobIds of “7860, 4, MachineName2”
workflow are “-1”, then we consider the messages of “7860,
4, MachineName2” work flow as noisy messages and they
should be removed.

After the processing, the remaining log entries are as
“TABLE II”.

TABLE II. Log entries after removing noisy messages

Process
Id

Thread
Id

Job
Id

Message Machine
Name

6496 25 105510
60

Execute job
for

execution.

Machine
Name1

6496 25 105510
60

Updating
build

version.

Machine
Name1

6496 25 -1 TRAP: …… Machine
Name1

B. Remove redundant TRAP messages

After removing noisy messages, we need to remove
redundant TRAP messages of the log file. For example, a log
file has the following TRAP messages after removing noisy
messages:

a. TRAP: Retry exception: [MACHINE:

MachineName1: TRAP: Exception [Exception:Failed to
adjust User Rights permissions. TRAP_DETAILS:
ErrorFile [C:\ Common\Collection.ps1], ErrorLine [1495:

throw $errorRecord]. TRAP_ACTION: Rethrow.].
TRAP_ACTION: Job 1024232 will retry.

b. TRAP: Exception [Exception:Failed to adjust
User Rights permissions. TRAP_DETAILS: ErrorFile [C:\
Common\Collection.ps1], ErrorLine [1495: throw
$errorRecord]. TRAP_ACTION: Rethrow.

We can find that the longer TRAP message contains

exactly the shorter TRAP message. We consider the shorter
TRAP as the root exception of the job and consider the
longer TRAP message as redundant TRAP message.

The redundant TRAP message removing rule is that if a
certain TRAP message, recorded as “Trap1”, contains any
one TRAP message of this log file whose length is shorter
than the length of “Trap1”, then we consider “Trap1” as a
redundant TRAP message and “Trap1” needs to be removed
from the log file.

After removing redundant TRAP messages, the example
above has the remaining TRAP:

TRAP: Exception [Exception:Failed to adjust User

Rights permissions. TRAP_DETAILS: ErrorFile
[C:\Common\Collection.ps1], ErrorLine [1495: throw
$errorRecord]. TRAP_ACTION: Rethrow.

C. Replace nested TRAP with its inner layer TRAP

After removing redundant TRAP messages of a log file,
if there are still nested TRAP messages remained, we need to
replace them with their inner layer TRAP messages. For
example, a log file has the following TRAP message after
removing redundant messages:

TRAP: Retry exception: [MACHINE: MachineName1:
TRAP: Exception [Exception:Failed to adjust User Rights
permissions. TRAP_DETAILS: ErrorFile
[C:\Common\Collection.ps1], ErrorLine [1495: throw
$errorRecord]. TRAP_ACTION: Rethrow.].
TRAP_ACTION: Job 1024232 will retry.

We can find that the TRAP message is a nested one. We

consider the inner layer TRAP as the root cause of the TRAP
and replace the TRAP with its inner layer TRAP.
Accordingly, the rule of this process is that if a TRAP
message is a nested one, we replace the message with its
inner layer TRAP.

After replacing nested TRAP with its inner layer TRAP,
the example above has the remaining TRAP:

TRAP: Exception [Exception:Failed to adjust User

Rights permissions. TRAP_DETAILS: ErrorFile
[C:\Grid\Common\Collection.ps1], ErrorLine [1495:
throw $errorRecord]. TRAP_ACTION: Rethrow.

III. EXCEPTION MESSAGE CATEGORIZATION

Although there may be a considerable amount of
exception messages in failed job logs, probably many of
these exception messages are printed out by the same source
code statement. We consider the messages that are printed
out by the same source code statement as the same category.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0123

If we categorize the exception messages into different
categories, we can further extract parameters of each
exception messages. These parameters may point out the
object that goes wrong, which may be a website, a server ID,
etc. We also take PowerShell logs for example to explain
how to do exception message categorization.

A. TRAP message categorization by edit distance

a. Calculate edit distances of each two TRAP
messages

Given two character strings and, the edit distance
between them is the minimum number of edit operations
required to transform into. Most commonly, the edit
operations allowed for this purpose are: (i) insert a character
into a string; (ii) delete a character from a string and (iii)
replace a character of a string by another character. Herein
we take a word of an exception message as a character to
calculate the edit distance. For example, the edit distance of
the string “I am David” and “I am John” is 1, not 5. We take
a word as an edit distance unit because the edit distance
calculated in this way can better reflect the degree of
similarity of two exception messages. After this step, we can
get the edit distances of each two TRAP messages.

b. Analyze these edit distances and set a threshold
value

We need to set a threshold value of edit distances to
judge whether any two TRAP messages are of the same
category. That is, the edit distance between each pair of
exception messages in the same group should be smaller than
a distance threshold. The idea of automatically determining
the threshold is that Intra-class distances and Inter-class
distances should be quite different. Based on such idea, we
use Gaussian mixture model to obtain the threshold.

Figure 1. Gaussian mixture model

As “Fig. 1”, there are three groups of exception messages.
However, we do not know which ones belong to the same
group in advance. Next, we compute distance of each pair of
messages, and obtain a set of distance. We use the Gaussian
mixture model to fit the distance distribution. The left and
right Gaussian components correspond to intra-class distance

and inter-class distance. Therefore, we can automatically
determine the threshold. (Refer to “(1)”)

 (1)
 (Th is the threshold of distance)

It should be pointed out that different kinds of exceptions
usually have very different messages. They can usually be
discriminated with high accuracy.

c. Categorize TRAP messages depending on the
threshold value

If the edit distance of two TRAP messages is lower than
the threshold value set in the last step, then we consider these
two TRAP messages are of the same category, through
which we can categorize TRAP messages into different
categories.

Herein we give a real example to show the process of
TRAP message categorization by edit distance.

B. Common sub-string extraction

After the automatic TRAP message categorization, we
need to extract the common sub-strings of each category
before parameter extraction.

a. Extract the preparatory longest common sub-string
of each category

This is implemented by LCS standard algorithm. We also
take a word of a string as the unit for the LCS algorithm. For
example, the longest common sub-string of “Failed to
connect database server SQL020” and “Failed to connect
database server SQL023” is “Failed to connect database
server”.

b. Extract the accurate longest common sub-string of
each category

After extracting the preparatory LCS by the LCS
algorithm, there may also be potential parameters in the
preparatory LCS. We need to remove these parameters in

The edit distances of each two TRAP messages are as
follows.

 Trap1 Trap2 Trap3 Trap4
Trap1 0
Trap2 1 0
Trap3 15 16 0
Trap4 13 15 2 0

We sort the edit distances above: 1, 2, 13, 15, 15, 16.
We can find that there is a great gap between the
higher values and the lower ones. We use the Gaussian
mixture model to set the threshold value as 5.

If the edit distance of two TRAP messages is smaller
than the threshold value, then they are of the same
category.
So the result of categorization of the example above is:
 1st category: Trap1, Trap2;
 2nd category: Trap3, Trap4.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0124

LCS and get the accurate longest common sub-string of each
TRAP message category. It is necessary to write a
configuration file that stores the possible parameter patterns.
And we compare the preparatory LCS with the parameter
patterns in the configuration file. We remove the sub-strings
that can match any of the parameter patterns and get the
accurate LCS.

c. Extract the common sub-strings of each category by
LCS

After we get the accurate LCS, we compare the LCS with
each TRAP message of the category. Then we can extract the
common sub-strings separated by the possible parameters
and the different parts of TRAP message of this category.
The common sub-strings can be used to extract parameter of
each TRAP message.

C. Parameter extraction

After we get the common sub-strings of each category,
we can extract the parameters of each trap message.

a. Extract the possible parameters by comparing each
trap message with common sub-strings

We consider the string between each two neighbor
common sub-strings as a possible parameter.

b. Compare each possible parameter with parameter
patterns in configuration file

If the possible parameter matches a parameter pattern,
then the substring that exactly matches the pattern is printed
out. Otherwise, we take the whole parameter string as a
parameter.

IV. JOB CATEGORIZATION

Each failed job log file probably contains some exception
messages. All exception messages of all failed job log files
are categorized after exception message categorization. If a
job log file contains the same set of exception message
category with another one, then the two job log files are of
the same job category. We call the set of exception message
category of each job as “job signature”. We consider the jobs
whose job signatures are the same as the same job category.

For example, if we have got the job signature of each job:
• Job1:

{TRAP category1, TRAP category2, TRAP category3}
• Job2:

{TRAP category4, TRAP category3, TRAP category1}
• Job3:

{TRAP category3, TRAP category4, TRAP category1}
• Job4:

{TRAP category2, TRAP category1, TRAP category3}
We can see that Job1 and Job4 have the same job

signature. In addition, Job2 and Job3 have the same job
signature. So finally we can categorize these job logs into
several job categories:
• Job Category1: {Job1, Job4}
• Job Category2: {Job2, Job3}

V. EXCEPTION MESSAGE CATEGORY

SIGNIFICANCE EVALUATION

Exception message category significance can be
evaluated by the following standards.
• Job occurrence number

- The total number of jobs where a message of the
exception message category occurs.
• Job category occurrence number

- The total number of job categories where a message
of the exception message category occurs.
• Message occurrence number

- The total number of message occurrence that
belongs to the exception message category.

VI. KEY OBJECT ANALYSIS

Key object parameter patterns are predefined in a
configuration file, such as database server “SQL024”,
application server “App007”. These parameters may occur in
different job log files. By doing key object statistics, we can
get job distribution situation on corresponding parameters.

We get the parameter statistics from the step of parameter
extraction.

The parameter statistics results of some actual provision
logs are as “TABLE III”.

TABLE III. The top 3 suspicious “database server”

Database server
name

Number of
suspended jobs

Percentage
in all jobs

SQL027 218 24%
SQL021 33 4%
SQL023 32 4%

REFERENCES
[1] K. Fisher, D. Walker, K. Q. Zhu, and P. White. From dirt to shovels:

Fully automatic tool generation from ad hoc data. In POPL’08.

[2] NetApp. Proactive health management with auto-support. NetApp
White Paper, 2007.

[3] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using model
checking to find serious file system errors. In OSDI’04.

[4] Dell. Streamlined Troubleshooting with the Dell system E-Support
tool. Dell Power Solutions, 2008.

[5] Hadoop. http://hadoop.apache.org/core.

[6] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan, “SALSA:
Analyzing Logs as State Machines”, In the proceeding of 1st
USENIX Workshop on the Analysis of System Logs, Dec. 2008.

[7] J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou. Triage:
Diagnosingproduction run failures at the user’s site. In SOSP’07.

[8] S. Ghemawat and S. Leung, “The Google File System”, In the
proceeding of ACM Symposium on Operating Systems Principles
(SOSP), Oct. 2003.

[9] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using
dependence graphs. In PLDI ’88.

[10] W. Jiang. Understanding storage system problems and diagnosing
them through log analysis. Ph.D. Dissertation.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0125

