
A Design Method of Linux Bootloader Based on S3C2440

Xianfan XU*, Kun ZHANG, Lei XU, Qiang LI
Key Lab of Intelligent Computing and Signal Processing of Ministry of Education, Anhui University

Hefei, China
e-mail:xxf@ahu.edu.cn

Abstract—Bootloader is an important part in the developing
stage of embedded system. Most embedded Linux Bootloaders
are developed based on development and application, which
have the disadvantages of large code capacity and low booting
speed. In this paper, by only operating necessary equipments
closely related to booting Linux kernel and combining with
dual-boot characteristic of S3C2440 and the staged booting
method, a new fast booting Bootloader is designed, which can
support dual-boot of NOR Flash and NAND Flash. The
practical test results show that the Bootloader prompted in
this paper has the advantages of low code capacity, fast
booting speed and high implementation efficiency.

Keywords-Bootloader; S3C2440; Linux kernel; Dual-boot

I. INTRODUCTION

Bootloader will have initialized hardware equipments
and built memory space mapping before the running of
operating system kernel, then the hardware and software
environment of system will be brought into a state that is
needed by booting operating system kernel, appropriate
environment is finally prepared for calling operating system
kernel[1]. The design of embedded Bootloader heavily relies
on CPU architecture and hardware environment. Although
using the same CPU, we also need the design matched with
hardware environment respectively due to the difference of
board-level equipments. So it is difficult to build a
completely universal and standard Bootloader.

Embedded system developers need to design or
transplant Bootloader by themselves according to CPU
structure and hardware feature. The workload of
transplantation is relatively small. However, most embedded
Linux Bootloaders are tools that face to almost all hardware
equipments, for example, U-Boot (Universal Bootloader),
which is used commonly[2]. They can meet requirements of
most hardware platforms, but they are developed based on
development and application, which has huge code,
complicate file structure and beyond understanding[3]. The
existing self-designed Bootloader did not fully consider the
booting speed. They also cannot support dual-boot of NOR
Flash and NAND Flash [4][5].

Based on above analysis, the special target board, the
core of that is S3C2440 micro-processor, is used as
hardware test platform. We have designed a Bootloader
which can run fast and support dual-boot combining the
staged booting method and dual-boot characteristic of
S3C2440. In order to further accelerate the booting speed in
different booting modes, we try to omit operations which
have nothing to do with the booting of Linux and take full

advantage of the steppingstone function offered by
S3C2440[6]. Finally, Linux kernel is made to boot fast in two
booting modes by doing corresponding process.

II. INTRODUCTION OF SYSTEM HARDWARE PLATFORM

A. Composition of System Hardware

The hardware platform of this embedded system is based
on the development board of Samsung’s S3C2440A.
Hardware system block diagram is showed in figure 1.

Figure 1. Hardware System Block Diagram.

Application of the NOR Flash is simple. Special gate
circuit is needless. Interfaces of the NOR Flash are identical
with RAM. All addresses are visible. The data of any
address can be accessed randomly. It supports XIP (execute
in place) which means that NOR Flash codes can be directly
executed in the NOR Flash without copying codes to
memory.

The NAND Flash interfaces are different from NOR
Flash. It only contains several I/O pins which are only
accessed in serial mode. The program code can not directly
run in NAND Flash and have to be copied to memory.
Reading NAND Flash one page one time is conducted. The
timing sequence of reading and writing is complex. Reading
and writing data in NAND Flash always needs support of
Memory Technology Deriver (MTD). The NAND Flash
used in this system is K9F2G08U0A of Samsung. The page
size is 2KBytes. The bite wide is 8bit. The capacity is
256MBytes. It will need 5 cycles to realize access to address
and data[7].

B. Booting Modes of S3C2440

S3C2440 can support two booting modes, NOR Flash
and NAND Flash, which are configured by the operating
mode pin OM1 and OM2. Whether S3C2440 booting from
NOR Flash or NAND Flash, program will be executed from
address 0x0000 0000, but the space mapping of address is

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0256

different. When S3C2440 boots from NOR Flash, the chip
selection space of nGCS0 will be mapped to BANK0
(startup address 0x0000 0000). At this time, nGCS0 will
connect NOR Flash so that booting program can be executed
from NOR Flash directly.

The process of S3C2440 booting from NAND Flash is
showed in figure 2. In order to support booting from NAND
Flash, S3C2440 is equipped with a built-in 4KBytes SRAM
(steppingstone). When S3C2440 boots from NAND Flash,
the first 4KBytes data of NAND Flash memory will be
loaded into the internal SRAM automatically by the internal
integrated NAND Flash controller of S3C2440. At the same
time, the 4KBytes SRAM is mapped to Bank0, then
S3C2440 will execute the booting code which have been
loaded into steppingstone[6].

Figure 2. NAND Flash Controller Boot Loader Block Diagram.

III. OVERALL DESIGN OF BOOTLOADER PROGRAM

The booting type of Bootloader can be single-stage or
multi-stage. In order to increase execution efficiency and
system universality, Bootloader designed in this paper is
divided into two stages. The first stage is written by
assembly language, and the second stage is designed by C
language. Completing the first stage depends on the
necessary initialization of CPU architecture, such as turning
off watchdog, setting CPU speed and clock frequency,
initializing interrupt, initializing SDRAM, clearing BSS
segment, setting stack, etc. The missions of the second stage
are initializing hardware equipments which will be used in
this stage, judging the mode of booting, setting booting
parameters for kernel. In order to reduce the detections and
initializations of board-level equipments, we just initialize
necessary equipments and develop drivers of hardware
devices which are related to the booting of Linux kernel.
This method will minimize and optimize code and accelerate
booting speed.

A. The First Stage of Design Flow

The first stage of design flow is showed in figure 3.
1) Building initialization environment.

Watchdog is enabled by default when system is powered
on. In order to prevent system from rebooting constantly, it
need to be turned off. The main mission of Bootloader is to
boot kernel. Offering service for interrupt is the
responsibility of operating system and applications.
Therefore, Bootloader does not have to response any
interrupt in implementation, without building exception
vector table for interrupt.

2) Setting clock, enabling instruction Cache and
accelerating booting speed.

System clock will be input clock when system is
powered on. In order to accelerate booting speed, registers

that are related to interior clock of S3C2440 are set. Basic
frequency is set at 400M. At the same time, instruction
Cache is enabled and programs are made to run fast.

3) Clearing BSS segment.
4) Initializing data width of SDRAM, access cycle of

reading/writing and refresh cycle.
5) Initializing UART.

It will be convenient to debug through Hyper Terminal
and observe booting information of Linux kernel.

6) Setting stack.
Setting stack is prepared for C language code. S3C2440

supports seven modes of operation. Although every
operation mode of processor has it own physical stack
register R13, CPU is in supervisor mode after initializing
CPU (CPU must be in supervisor mode before booting
kernel). We just need to initialize stack register in this
mode[8].

7) Jumping to C language entrance of the second
stage.

Figure 3. The First Stage of Booting Process.

B. The Second Stage of Design Flow

 The second stage of design flow is showed in figure 4.

Figure 4. The Second Stage of Booting Process.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0257

1) Judging the booting mode and realizing dual-boot.
The booting characteristic of S3C2440 shows that

program will be run in the built-in SRAM (steppingstone) if
S3C2440 boots from NAND Flash at the beginning. The
data of address 0x0000 0000 can be read and written directly.
When S3C2440 boots from the NOR Flash, program will be
run in NOR Flash, data can not be written by directly
assigning of C language.The data which is different from
machine code at address 0x0000 0000 is written to address
0x0000 0000, then the data of address 0x0000 0000 is read
and compared with the data written just now. If the result is
identical, S3C2440 boots from NAND Flash, else it boots
from NOR Flash[9].

2) Processing according to different booting modes
and accelerating booting speed.

Bootloader will be executed in NOR Flash directly and
the speed is far less than SDRAM if S3C2440 boots from
the NOR Flash. In order to accelerate booting speed, the
second stage program is loaded to SDRAM. If S3C2440
boots from the NAND Flash, it will copy the first 4KBytes
content of NAND Flash to on-chip SRAM automatically.
The size of Bootloader in this article is less than 3K. So
there is no necessary to load codes of the second stage to
SDRAM. At the same time, timing refreshing and control of
reading and writing are needless. Then the booting speed can
be further accelerated.

3) Copying Linux kernel to the specified location on
SDRAM(0x30008000).

4) Setting booting parameters of kernel.
The interaction between Bootloader and kernel is

unidirectional. Bootloader transfer the parameters to Linux
kernel, while Bootloader and kernel can not be run at the
same time. So firstly, Bootloader will storage the parameters
into an appointed place（address 0x30000100）, then it will
boot kernel, finally, kernel will obtain the parameters from
this place. The kernels after Linux2.4 all expect to pass
booting parameters by tag list. Tag is a structure. Tag list is
to store several marks one by one. Tag list starts with
ATAG_CORE and ends with ATAG_NONE[10]. Main codes
are showed as follows:

//Setting booting tag (The start position is 0x30000100)
setup_start_tag();
//Setting system memory parameters
setup_memory_tag();
// Setting the command line parameters
setup_commandline_tag();
// Setting end tag
setup_end_tag();

5) Jumping to the entrance of kernel (0x30008000)
and booting kernel.

The main codes are showed as follows:
void (*theKernel)(int zero, int arch, unsigned int

params);
theKernel = (void (*)(int, int, unsigned

int))0x30008000;
theKernel(0, MACH_TYPE_S3C2440,

BOOT_PARAMS_ADDR);

The equivalent codes written by assembly language are
showed as follows:

mov r0， #0
ldr r1， = MACH_TYPE_S3C2440
ldr r2，= BOOT_PARAMS_ADDR
mov pc， #0x30008000
Kernel will call bottom function according to

MACH_TYPE_S3C2440 (machine ID).
BOOT_PARAMS_AD DR (the value is 0x3000 0100 in this
system) will tell kernel the start address of tag list.

With this, the task of Bootloader has been completed.
System’s control right will be handed over to the Linux
kernel. Kernel will start to execute.

IV. THE EXPERIMENTAL RESULTS

In order to fully verify the feasibility of the Bootloader,
the staged debug has been carried out in the design .LED is
right lit in the first stage, which insured reading CPU
registers and initializing CPU correctly. UART is initialized
in the second stage. Hyper Terminal will correctly output
debugging information. Bootloader is complied with cross-
complier and the generated binary file is written to the NOR
Flash and NAND Flash of development board via JTAG.
Booting from NOR Flash or NAND Flash is based on
booting selected switch. The booting information is showed
in Figure 5. The experimental results have showed that the
Bootloader can boot Linux kernel quickly and correctly. It
can also support dual-boot of NOR Flash and NAND Flash.

Figure 5. Bootloader Boot the Linux Kernel.

V. CONCLUSIONS

The special target board, the core CPU of that is
S3C2440, is used to design a new Bootloader.The
Bootloader not only has advantages of small code scale
convenient maintenance, but also can support dual-boot of
NOR Flash and NAND Flash. The initialization and the
driver development of equipments that are related to booting
Linux can accelerate the booting speed. We also take full
consideration of the difference between NOR Flash and
NAND Flash, and take full advantage of built-in 4Kbytes
SRAM of S3C2440. The whole design flow and critical
codes are provided, and every step of the design is described
in detail too. The design method has strong practical value in
the development and can offer a new good reference for
other Bootloader’s developments simultaneously.

REFERENCES
[1] Wang Ya-gang.“Analysis and Transplant of Embedded Bootloader

Mechanism”, Computer Engineering,Vol.36,No.6,2010:267-269

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0258

[2] Wolfgang Denk. The DENX U-Boot and Linux Guide (DULG) for
canyonlands [EB/OL]. http://www.den x.de/wiki/ publish/DULG/
DULG-canyonlands.pdf,2012

[3] Ye Lin,Fang Jian-jun.“Design of the BootLoader Based on ARM9
Embedded System”, Science &Technology Information,
2009(11):428-429.

[4] Tian Hui-feng,“Design and Realization of Bootloader Based on
S3C2440”,Computer Applications,Vol.29,No.7,2010:29-32

[5] Jiang Wei,“Analysis and Design of Embedded System’s Bootloader
Based on ARM S3C2410”,Electronic Engineer,Vol.34,No.10,
2008:49-52

[6] Samsung Electronics.S3C2440A 32-Bit RISC micro controller user's
manual [Z],2004.

[7] Samsung Electronics. K9F2G08UXA Flash Memory Data Sheet [Z],
2007.

[8] Guo Feng, Yuan Guo-liang, Wang Li-fang.“Analysis and design of
embedded Linux Bootloader”, Information Technology,2011(11),
123-125

[9] Du Chun-lei. Configuration System and Programme in ARM[M].
Beijing: Tsinghua University Press,2003.

[10] Wei Dong shan. Embedded Linux Application Development
Completely Manual [M] Beijing: People's Posts and
Telecommunications Press, 2008.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0259

