
A Trappy Alpha-Beta Search Algorithm in Chinese
Chess Computer Game

Jian Fang, Jian Chi, Hong-Yi Jian
Mathematics and Computer Department, Hebei Normal University for Nationalities, Chengde 067000, Hebei, China

Email: csjfang@yeah.net

Abstract—In this paper, we propose an improved alpha-beta
search algorithm, named trappy alpha-beta (simply TrapA

B),
for game-tree in order to identify and set the potential traps
in the game playing. TrapA

B can be regarded as an extension
of the traditional alpha-beta search algorithm which ties to
predict when the opponent might make a mistake and select
such moves that can most likely lead the an opponent into the
trap by comparing the various scores returned through iterative
deepening technology. In TrapA

B , we define two basic components:
1) defining a trap by considering the nature of alpha-beta search
algorithm and referring the evaluation value returned by iterative
deepening; and 2) evaluating a trap by calculating the probability
that the opponent fall into the trap and the advantage followed
when the opponent fall into it. In our experiment, we test the
performance of TrapA

B in comparison with three game-tree search
algorithms, i.e., min-max, trappy minimax, and alpha-beta, by
playing with four testing opponents (their depthes are 7, 8, 9, and
10 respectively), which are obtained form a typical Chinese chess
computer game programme-Xqwizard (http://www.xqbase.com/).
The comparative results show that our designed TrapA

B can
effectively find and set the traps in the playing with opponents.

Keywords—alpha-beta search; Chinese chess computer game;
game-tree; iterative deepening; min-max search; trappy minimax

I. INTRODUCTION

Shannon in 1950 [1] firstly propose how to design a
chess-playing programme which should include three major
components: move generation [2], evaluation function [3], and
move search algorithm [4]. By analyzing the 3-ply game-tree
in Fig. 1, we give the simple descriptions about these three
parts as follows:

1) The move generation [2] is represented as a game-tree
which organizes the moves generated in the playing
process with a tree structure as shown in Fig. 1. The root
node of game-tree represents the current playing position
and its children nodes are the subsequent positions that
are generated by carrying out all the feasible moves.
Every children node continues to extend their subsequent

Figure 1. An illustration of game-tree

positions according to the above-mentioned process until
the specific depth is arrived.

2) However, in the practical implementation, due to the
limitations of running time and memory requirement,
the game-tree can not extend to such positions in which
the win or failure is clear. Thus, we need to assess
the positions (e.g., leaf nodes in Fig. 1) with a eval-
uation function [3] by extracting some features from
the position, such as material balance, adjunctive value
of position, mobility, board control and connectivity.
Through assigning weights to each feature, the evalu-
ation function is able to convert a position into a score
(e.g., the digits under leaf nodes in Fig. 1).

3) The search algorithm [4] is used to find an best move for
the root node in the game-tree by comparing the different
returned values from the leaf nodes. The commonly
used game-tree search algorithms are min-max [5] and
alpha-beta [6]. Alpha-beta can be regarded as a pruned
min-max search algorithm, because when searching the
game-tree, min-max needs to construct a total game-
tree, while alpha-beta establishes a pruned game-tree.
The size of game-tree generated by alpha-beta is always
smaller than alpha-beta.

For the move generation and evaluation function, in recent
years there are many representative works [7, 8, 9, 10] which
have been proposed and obtained the successful applications
in Backgammon, Go, Checker, Othello, International chess,
and Chinese chess, etc, two-player board games. For example,
Fenner and Levene [7] used the hashing scheme to design the
bit-board move generation for moving the pieces in chess-like
board games. In their development, the rotated bit-boards are
unnecessarily considered and the finally experimental results
show that the simple variations of hashing functions will bring
about a minimal perfect hashing scheme. By studying the
brain activity of professional and amateur players in a board
game named shogi with the functional magnetic resonance
imaging, Wan, er al, [8] found that there are two specific
activations which can influence the professionals in the game-
playing, i.e., one is the precuneus of the parietal lobe during
perception of board patterns, and the other is the caudate
nucleus of the basal ganglia during quick generation of the
best next move. Based on the individual evaluations according
to played games through the several generations and under the
different environments, the authors in [9] presented a differ-

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France. 
© the authors 

0260



Figure 2. The min-max search algorithm

ential evolution (simply DiffE) algorithm to evaluate and tune
the position evaluation function. By employing and upgrading
with a history mechanism, DiffE used an opposition-based
optimization to improve the evaluation of individuals and the
tuning process. Vazquez-Fernandez, et al, [10] used a local
search scheme based on the Hooke-Jeeves algorithm to con-
struct the evaluation function, which is adopted to adjust the
weights of the best virtual player obtained in the evolutionary
process. In this paper, our study mainly focuses on designing
a high-intelligent search algorithm by introducing the trappy
mechanism [11]. Gordon and Reda [11] firstly proposed a
trappy minimax search algorithm, which is called TrapMin

Max

in this paper, in 2006 IEEE Symposium on Computational
Intelligence and Games. Motivated by TrapMin

Max, we propose
an improved alpha-beta search algorithm, named trappy alpha-
beta (simply TrapAB), for game-tree in order to identify and set
the potential traps in the game playing. TrapAB can be regarded
as an extension of the traditional alpha-beta search algorithm
which ties to predict when the opponent might make a mistake
and select such moves that can most likely lead the an oppo-
nent into the trap by comparing the various scores returned
through iterative deepening technology. In the experimental
part, we test the performance of TrapAB in comparison with
three game-tree search algorithms, i.e., min-max, TrapMin

Max,
and alpha-beta, by playing with four testing opponents (their
depthes are 7, 8, 9, and 10 respectively), which are obtained
form a typical Chinese chess computer game programme-
Xqwizard (http://www.xqbase.com/ ). The comparative results
show that our designed TrapAB can effectively find and set the

traps in the playing with opponents.

II. THE BRIEF DESCRIPTIONS OF THREE GAME-TREE
SEARCH ALGORITHMS

A. Min-max Search

According to Fig. 2, we explain the running process of min-
max search algorithm. In Fig. 2, the nodes in odd plies are
called max-nodes, e.g., p1, p31, p32, · · · , p39. And, the nodes
in even ply are called min-nodes, e.g., p21, p22, p23, p41, p42,
· · · , p4,27. The values of max-nodes are the maximal values
of their children nodes, e.g.,

p1= max (p21,p22,p23) = max (4, 5, 3) = 5, and (1)

p34= max
(
p4,10,p4,11,p4,12

)
= max (1, 3, 5) = 5. (2)

And, the values of min-nodes are the minimal values of their
children nodes, e.g.,

p22= min (p34,p35,p36) = min (5, 9, 8) = 5, and (3)

p23= min (p37,p38,p39) = min (3, 9, 7) = 3. (4)

According to the principle mentioned above, the position
A can find the best move m5 which will bring about the
maximum advantage for current player and meanwhile give
rise to the maximum obstacle for the opponent.

Figure 3. The alpha-beta search algorithm

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France. 
© the authors 

0261



Figure 4. TrapMin
Max [11]

B. Alpha-beta Search

Alpha-beta search can be regarded as a pruned min-max
search, because in the process of game-tree searching, some
nodes are not necessary to generate. This will save a great
deal of running time and memory requirement. Fig. 3 gives
the game-tree generated with alpha-beta search. By observing
Fig. 3, we depict the running process of alpha-beta search.

Alpha-pruning: In Fig. 3, the value of node p1 can be
calculated with the following equation:

p1 = max (p22,p23) = max (p22,min (p37,p38,p39))

= max (5,min (3,p38,p39)) = 5.
(5)

From Eq. (5), we can see that the values of nodes p38 and
p39 do not have an impact on the calculation of p1. So, in the
process of searching game tree, we can give up the generation
to the nodes p38 and p39. This search strategy is called alpha-
pruning.

Beta-pruning: In Fig. 3, the value of node p21 can be
calculated with the following equation:

p21 = min (p31,p32) = min (p31,max (p44,p45,p46))

= min (8,max (9,p45,p46)) = 8.
(6)

From Eq. (6), we can see that the values of nodes p45 and p46
do not have an impact on the calculation of p21. So, in the
process of searching game tree, we can give up the generation
to the nodes p45 and p46. This search strategy is called beta-
pruning.

C. TrapMin
Max

Through the example in Fig. 4, we introduce the basic idea
of TrapMin

Max. In Fig. 4, the computer has three moves from
which to choose. Suppose the second move B is chosen. In
that case, a score of at least 6 is guaranteed, presuming the
opponent plays the best response C. However, the alternative
for the opponent D looks very appealing when evaluated at

Algorithm 1 Trappy Alpha-Beta Search-TrapAB
1: Input: The current position p and maximal search depth

maxdepth;
2: Output: The best move of p;
3: best, rawEval, bestTrapQuality = −∞;
4: for Every move m corresponding to position p do
5: Make move m on position p;
6: for Every response of opponent do
7: scores[maxdepth] = - alpha-beta(p, maxdepth);
8: if scores[maxdepth] > rawEval then
9: rawEval = scores[maxdepth];

10: end if
11: end for
12: Tfactor = Trappiness(scores[]);
13: profit = scores[maxdepth]-rawEval;
14: trapQuality = profit × Tfactor;
15: if trapQuality > bestTrapQuality then
16: bestTrapQuality = trapQuality
17: end if
18: adjEval = rawEval + scale(bestTrapQuality)
19: if adjEval > best then
20: best = adjEval;
21: end ifRetract move m from position p;
22: end for
23: Return best;

depths 3 through 9. However, when evaluated at depth 10, the
node has an evaluation that is considerably worse than even
the correct move, despite all the good evaluations using the
upper levels.

III. TRAPPY ALPHA-BETA SEARCH-TrapAB

In Algorithm 1, we give the description of TrapAB . In Al-
gorithm 1, two necessary parameters are needed to determine:
trappiness, and profit (i.e., profitability).

1) Trappiness is based on the distance between a high
positive score and an actual negative score, and is
calculated from the point of view of the opponent. That
is, it attempts to measure the likelihood that the opponent
could miss the trap.

2) Profitability is the gain to the program if the opponent
falls for the trap. It is calculated from the point of view
of the algorithm.

Trappiness and profitability are both factored into the evalua-
tion of each possible computer move, along with the alpha-beta
search as shown in subsection II-B. The trappiness factor (T)
has a range from [0, 1], of which the calculations are different
depending on the backed-up score for alpha-pruning level (i.e.,
odd ply) or beta-pruning level (i.e., even ply). T corresponding
to the alpha-pruning level is defined as:

T =


0 u ≤ m

0.75 u−m
abs(m)

m < u < m + abs (m)

0.75 + 0.25
u−m−abs(m)

3abs(m)
m + abs (m) ≤ u < m + 4abs (m)

1 u ≥ m + 4abs (m)

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France. 
© the authors 

0262



And, T corresponding to the beta-pruning level is defined as:

T =


0 u ≥ m

0.75 m−u
abs(m)

m > u > m − abs (m)

0.75 + 0.25
m−u−abs(m)

3abs(m)
m − abs (m) ≥ u > m − 4abs (m)

1 u ≤ m − 4abs (m)

where, u is the evaluation value of position at the maxdepth−
1 ply and m is the evaluation value at the maxdepth ply.

In our TrapAB , we define a trap as follows: A trap is a move
that looks good in the short term but has bad consequences in
the long term. Thus, in the alpha-beta algorithm, it is a move
with high evaluations at shallow depths and a low evaluation
at the maxdepth ply. Traps have the significance that a non-
optimal opponent might be tricked into thinking that they are
good moves when in fact they are not.

IV. EXPERIMENTAL SETUP AND ANALYSIS

In our experiment, we test the performance of TrapAB in
comparison with three game-tree search algorithms, i.e., min-
max, TrapMin

Max, and alpha-beta, by playing with four testing
opponents (their depthes are 7, 8, 9, and 10 respectively),
which are obtained form a typical Chinese chess computer
game programme-Xqwizard (http://www.xqbase.com/ ).

Our comparisons are arranged as following procedures:
Firstly, let TrapAB with 7, 8, 9, and 10 depths play with
min-max, TrapMin

Max, and alpha-beta with the same search
depths respectively. Secondly, for every search depth, TrapAB
plays with its opponents 100, 200, 300, 400, and 500 times
respectively. Thirdly, the playing results, i.e., the numbers of
win and lose, are recorded. The experimental results are listed
in TABLE I.

From TABLE I, we can see that because without using
any trappy strategy, TrapAB obtains the significantly better
performances compared with min-max and alpha-beta. For
example, compared with min-max with 7, 8, 9, and 10
depths, the winning percentages of TrapAB arrive 0.867, 0.837,
0.863, and 0.850 respectively. And, compared with alpha-
beta with 7, 8, 9, and 10 depths, the winning percentages of
TrapAB arrive 0.857, 0.856, 0.842, and 0.833 respectively. In
comparison with TrapMin

Max, our TrapAB also obtains the better
performances, i.e., the average winning percentage can also
reach 80%. Because in the process of generation of game-
tree, alpha-beta can prune more necessary nodes, it can search
more deeply within the same time and memory limitations.
Hence, TrapAB can find more hidden traps than TrapMin

Max.
The comparative results show that our designed TrapAB can
effectively find and set the traps in the playing with opponents.
The results also reflect the opponents that performs a full-
width search to a depth greater than TrapAB will not fall for a
trap. However, when the opponents do not perform full-width
search, they are always susceptible to traps set by TrapAB .

V. CONCLUSION

In this paper, we propose an improved alpha-beta search
algorithm, named trappy alpha-beta (simply TrapAB), for game-
tree in order to identify and set the potential traps in the game
playing. In TrapAB , we define two basic components: how to

TABLE I
THE EXPERIMENTAL RESULTS BY PLAYING WITH DIFFERENT TESTING

PLAYERS

TrapAB vs. Min-max vs. TrapMin
Max vs. Alpha-beta

7-ply 80-20 73-27 68-32
7-ply 160-40 142-58 124-76
7-ply 246-54 228-72 188-112
7-ply 328-72 280-120 270-130
7-ply 422-78 397-103 323-177

8-ply 84-16 79-21 65-35
8-ply 164-36 154-46 137-63
8-ply 240-60 231-69 191-109
8-ply 354-46 300-100 269-131
8-ply 421-79 365-135 309-191

9-ply 82-18 77-23 63-37
9-ply 171-29 143-57 134-66
9-ply 251-49 236-64 206-94
9-ply 344-56 300-100 276-124
9-ply 441-59 382-118 341-159

10-ply 87-13 73-27 63-37
10-ply 167-33 151-49 135-65
10-ply 249-51 235-65 197-103
10-ply 335-65 308-92 262-138
10-ply 422-78 385-115 331-169

define and evaluate a trap by calculating the probability that
the opponent fall into the trap. The finally comparative results
show that our designed TrapAB can effectively find and set the
traps in the playing with opponents.

REFERENCES

[1] C. E. Shannon, “Programming a computer for playing chess,” Philo-
sophical Magazine, vol. 41, no. 314, pp. 256-275, 1950.

[2] J. J. Gillogly, “The technology chess program,” Artificial Intelligence,
vol. 3, pp. 145-163, 1972.

[3] J. Clune, “Heuristic evaluation functions for general game playing,”
In Proceedings of the Twenty-Second AAAI Conference on Artificial
Intelligence, pp. 1134-1139, 2007.

[4] Michael Tarsi, “Optimal search on some game trees,” Journal of the
ACM, vol. 30, no. 3, pp. 389-396, 1983.

[5] M. S. Campbell, T. A. Marsland, “A comparison of minimax tree search
algorithms,” Artificial Intelligence, vol. 20, no. 4, pp. 347-367, 1983.

[6] J. Schaeffer, “The history heuristic and alpha-beta search enhancements
in practice ,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 11, no. 11, pp. 1203-1212, 1989.

[7] T. Fenner, M. Levene, “Move generation with perfect hash functions,”
International Computer Games Association Journal, vol. 31, no. 3, pp.
3-12, 2008.

[8] X. H. Wan, H. Nakatani, K. Ueno, T. Asamizuya, K. Cheng, K. Tanaka,
“The neural basis of intuitive best next-move generation in board game
experts,” Science, vol. 331, no. 6015, pp. 341-346, 2011.

[9] B. Boskovic, J. Brest, A. Zamuda, S. Greiner, V. Zumer, “History
mechanism supported differential evolution for chess evaluation function
tuning,” Soft Computing-A Fusion of Foundations, Methodologies and
Applications, vol. 15, no. 4, pp. 667-683, 2010.

[10] E. Vazquez-Fernandez, C. A. C. Coello, F. D. S. Troncoso, “An evolu-
tionary algorithm coupled with the Hooke-Jeeves algorithm for tuning
a chess evaluation function,” In Proceedings of 2012 IEEE Congress on
Evolutionary Computation, pp. 1-8, 2012.

[11] V. S. Gordon, Ahmed Reda, “Trappy minimax-using iterative deepening
to identify and set traps in two-player games,” In Proceedings of 2006
IEEE Symposium on Computational Intelligence and Games, pp. 205-
210, 2006.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France. 
© the authors 

0263




