

Design and Implementation of Improved Algorithm for Association Rules Mining

ZHANG Lin
Dept. of Computer Science and Technology

 AnHui SanLian University
HeFei, AnHui, P.R.C., 230000

sirenrabbit@sina.com

ZHANG Jian-li
New Star Institute of Applied Technology

NO.451, Huangshan Road
 Hefei, Ahhui, P.R.C., 230031

Wjxc1982@126.com

Abstract—For traditional algorithm of association rules
mining based on frequent item sets and ignored the exception
rules, as well as the traditional issues such as frequent item
sets algorithm can be costly, a new association rules mining
algorithm which isn’t based on frequent item sets is given in
this paper. This method scanned the database once firstly, and
then uses the logical and set theory operations to generate
association rules, including frequent association rules and
exception rules. Through case analysis, results showed that the
algorithm with high accuracy, low cost, and the ability to
generate exception rules could provide some reference data for
exception knowledge mining.

Keywords-association rules; data mining; frequent item sets;
algorithm; exception rules;

I. INTRODUCTION

Traditional association rules mining algorithm is based
on frequent item sets, but the calculate process of frequent
item sets often exist problems such as database scanned too
many times or database traversal needs too much space.
These problems will inhibit the efficiency of association
rules mining algorithm. In addition, the rules which are
discovered by association rules mining algorithm that based
on frequent item sets often followed the most data in
database, and the rules called exception rules which
supported by few data often be ignored just because their
data support less than the minsupport, and these ignored
rules often have a great idea of value. In this paper, based on
recent years’ association rules mining algorithms[1-9], we
advance a new association rules mining algorithm which is
base on logic and sets operation. This algorithm is no longer
based on frequent item sets, and can mining out more rules
including exception rules, and its efficiency is high than
traditional association rules mining algorithm which is based
on frequent item sets.

II. ALORITHM DESCRIPTION[10]

A. Some concepts

Suppose I={i1,i2,...,im} is a collection of items,
T={t1,t2,...,tn} is a transaction database, which is made up
of a series of transactions with a unique identification TID,
and each transaction ti (i=1,2,...,n) is a subset of I.

In the traditional association rule mining algorithm,
strong association rule is defined as: For the T and I each
association rule which meet the minsupport and
minconfidence is the strong association rule.

Due to the support degree has nothing to the algorithm
advanced in this paper, the strong association rule is defined
as: If the number of transactions that contained I1∪I2 and
the number of transactions that contained I1’s ratio that is
Count (I1∪I2)/Count (I1) is greater than or equal to
minconfidence which is set by user, I1I2 will be an
association rule for T and I.

B. Design of improved algorithm for association rules
mining

1) Produce initial linked list
If the collection of items is I={i1,i2,...,im}, transaction

database is T={t1,t2,...,tn}, then after scan database once we
can establish a linked list L with length m. Each node in L is
composed of 4 fields: exp, data, count and next. In the 4
fields, exp field is used for store current node’s item sets
Ii(Ii⊆I); data field is used for store the TID of transaction
which contains item sets Ii by bits whit length n (If
transaction j contains item sets Ii, the corresponding bit will
be set for 1, otherwise will be set for 0); count field is used
for store the number of 1 in data field(that is the number of
times that Ii appears in T); and next field is used for store the
point which is point to next node. In the initial linked list L,
the i-th node’s exp field is ii, its data field is stored the TID
of transactions which contain ii, its count field is stored the
number of times that ii appears in T. For example, there is a
sample database shown as following tableⅠ:

TID Item Sequence

1 B,C,D

2 A,B,C

3 A,C,E

4 B,C,D,E

5 A,C,D

6 A,D

7 B,C

8 A,B,C,D

9 A,B,C,E

TABLE I. sample database Ⅱ

By table I we know that I={A,B,C,D,E},
T={1,2,3,4,5,6,7,8,9}, item A appears in transaction 2, 3, 5,
6, 8 and 9, account 6 times. So the first node’s value of exp
field in L is A, its value of data field is 011011011, and its

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0308

value of count field is 6. Thereby, we can get the initial
linked list L after scan table . The result shown Ⅰ as Figure
1:

2) The idea of algorithm
Compare each 2 node in the initial linked list L. If node

P and node Q’s exp field have nothing in common, that is
p->exp∩Q->exp=∅, then establish a new node New,
New->exp=P->exp∪Q->exp ， New->data=P->data AND
Q->data (namely P->data and Q->data do a logical-and
operation), New->count=Count(New->data) (namely
New->count is the number of 1 that appears in New->data).
After the establishment of the new node, calculate values of
New->count/P->count and New->count/Q->count
respectively. If New->count/P->count≥minconfidence, then
PQ is a rule for T and I, if
New->count/Q->count≥minconfidence, then QP is a rule
for T and I. Finally, look over the linked list L, judge if the
node New is belong to L. If New∉L, then insert New to L.
When all node in L had compared, look over L to find if
there are new nodes inserted. If there are new nodes
inserted,that means there may also rules are not found,
therefor compare all node with new nodes that just inserted
until L is no longer has new nodes insert.

Establish 5 points: First, Last, End, Start and P. In the 5
points, First is used for point to original comparision points;
Last is used for point to L’s current last node; End is used
for point to L’s original last node, its initial value is L; Start
is used for point to the previous node of new nodes, that is
the original last node, its initial value is also L; and P is used
for point to current comparision points. After comparison in
initial linked list L, if End=Last, that means no new nodes
inserted, program ends. Otherwise, Start=End, End=Last,
then into the comparision loop again.

Specific steps of the algorithm is as follows:
step 1: Establish the initial linked list L by scan the

database once.
Step 2: Initialize the Last and End points, Last points to

the last node, End=L.
Step 3: If End=Last, the program ends, otherwise, go to

step 4.
Step 4: Initialize First and Start points, First=L,

Start=End, End=Last.
Step 5:Compare the node between First and End to the

node between Start and End, then insert new nodes that meet
the criteria to L.

Step 6: Compare End and Last again, if End=Last,
program ends, otherwise (there are new nodes inserted), go
to step 4.

3) Description of algorithm
Main programs of this algorithm’s pseudocode is as

follows:

III. EXAMPLES ANALYSIS

Suppose there is a sample database shown as follows in
tableⅡ:

TABLE II. sample database Ⅱ

TID Item Sequence
1 A,B,C,D

2 B,C,E

3 A,B,C,E

4 B,D,E

5 A,B,C,D

In this transaction database, I={A,B,C,D,E},
T={1,2,3,4,5}.

Step 1: Establish the initial linked list L by scan the
database once.

After scanned the database, we can get the initial linked
list L shown as follows in Figure 2:

#define MC minconfidence
main()
{ Boolean Flag=false;

 Boolean Ifadd=false; L
while(End!=Last)
{ First=L;

Start=End;
End=Last;
while(First!=End)
{ if(Flag)
 { P=First; }

if(First==Strart)
 { Flag=true; }
else
{ P=Start; }
 while(P!=End)
 { P=P->next;

Fig.1 Initial linked list L for sample database Ⅰ

 if(First->exp∩P->exp==∅)
 {
 New=Node new(); //establish a new node
 New->exp=First->exp∪P->exp;
 New->data=First->data AND P->data;
 New->count=Count(New->data);
 New->next=NULL；
 if(New->count/First->count>=MC)
 { Ifadd=true;
 printf(“P->expFirst->exp”); }

if(New->count/P->count>=MC)
{ Ifadd=true;
 Printf(“First->expP->exp”); }
if(Ifadd==true&&New∉L)
{ Last->next=New;
 Last=New; } } }

First=First->next; }
Flag=false; } }

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0309

Step 2: Initialize the Last and End points, Last points to
the last node, End=L, shown as follows in Figure 3:

Step 3: On account of End≠Last, last the program

proceed to step 4.
Step 4: Initialize First and Start points, First=L,

Start=End, End=Last, shown as follows in Figure 4:

Step 5:Compare the node between First and End to the
node between Start and End, then insert new nodes that meet
the criteria to L, and output the appropriate rules, shown as
follows in Figure 5.

And gained the following rules: AB, BA, AC,
CA, AD, DA, BC, CB, BD, DB, BE,
EB, DC, EC

Step 6: Compare End and Last again, because End≠Last,
so we repeat step 4 to step 6 until no new nodes insert to L.
Its running process is shown as follows in Figure 6:

After comparison again we gained the following new
rules: ABC, BCA, ABD, BDA, ACD, CDA,
BAC, ACB, ADB, CDB, CEB, CAB, ABC,
ADC, BDC, BEC, DAB, ABD, DAC,
ACD, DBC, EBC, ABCD, CDAB, ACBD,
BDAC, ADBC

Just because End≠Last still come into existence，so we
repeat step 4 to step 6 again. Its running process is shown as
follows in Figure 7:

Then we gained the following new rules: ABCD,
BCDA, ACDB, ABDC, ABCD, DABC

Fig.7 Linked list L after the third node compare

Fig.6 Linked list L after the second node compare

Fig.4 Initialize point First and Start for linked list L

Fig.3 Initialize point Last and End for linked list L

Fig.2 Initial linked list L for sample database Ⅱ

Fig.5 Linked list L after the first node compare

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0310

Now End=Last, program ends. We get all of the
association rules. These rules not only contains the rules
based on frequent item sets, but also contains expection
rules.

IV. ALGORITHM ANALYSIS

This algorithm just need to scan database once, and does
not have to produced frequent item sets. Compare to
traditional association rules mining algorithm based on
frequent item sets, this algorithm’s implementation
efficiency is large improved, and produced comprehensive
rules than association rules mining algorithm based on
frequent item sets. It not only contains rules produced by
frequent item sets, but also contains rules produced by the
datas whose support is less than minsupport.

In performance tests, compare to traditional association
rules mining algorithm based on Apriori algorithm to
produce frequent item sets, and using the database that
containing 18 items and 2714 transactions. The running time
count from input to output. The result shown that compare to
traditional algorithm the efficiency of algorithms in this
paper is improved about 60%, and produced exception rules
which traditional algorithms can not produced.

V. THE ENDING

This paper advanced a new association rules mining
algorithm which does not based on frequent item sets. This
algorithm’s mining efficiency and its comprihensive of
mining rules are all over traditional association rules mining
algorithm. But if the number of item are too much, or the
minconfidence’s value is set too small, it’ll produce a linked

list L whose length will so large. At that time, we can
consider the linked list for subparagraph processing, such as
we can establish a new linked list for new node to replace
insert the node to L.

REFERENCES
[1] Agrawalr, Imielinski, Swamia. “Mining association rules between

sets of items in large databases.” Proc of ACM SIGMOP Conference
on Management of Data.New York:ACM Press, pp. 207-216, 1993.

[2] WuFan, Chiangsw, Linjr. “A new approach to mine frequent patterns
using item-transformation methods,” Information Systems, pp.
1056-1072, July, 2007.

[3] Zhang Zhongping, Li Yan, Lin Zhijie etc., “Frequent item sets
mining algorithm based on index array,” Application Research of
Computers, pp. 44-46, January, 2009.

[4] Liu Yingdong, Leng Mingwei, Chen Xiaoyun, “Maximal Frequent
Itemsets Mining Algorithm Based on Linked List Array,” Computer
Engineering, pp. 89-90,93, June, 2010.

[5] Wang Pingshui, “Research on association rules mining algorithm,”
Computer Engineering and Applications, pp. 115-116, 2010.

[6] Yang Ping, Yang Tianshe, Du Xiaonin etc., “A class-attribute
interdependency maximization based algorithm for supervised
discretization,” Control and Decision, pp. 592-596, April, 2011.

[7] Wang Xiangrui, “Research and Application of Association Rules in
Data Mining Technology,” Coal Technology, pp. 205-206, August,
2011

[8] Zhang Guanglu, Lei Jingsheng, Wu Xinghui, “An Improved Apriori
Algorithm for Mining Association Rules,” Computer Technology and
Development, pp. 84-88,92, June, 2010.

[9] Liu Xiaowei, Chen Junli, Qu Shifu etc., “Improved Apriori
algorithm.Computer Engineering and Applications,” Computer
Engineering and Applications, pp. 149-151,159, November, 2011.

[10] Mao Guojun, Duan Lijuan, Wang Shi, Principle and algorithm of data
mining, CA: Tsinghua University press, 2007.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0311

