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Abstract—In this paper, we compare and analyze the per-
formances of nine unsupervised discretization methods, i.e.,
equal width discretization (EWD), equal frequency discretiza-
tion (EFD), k-means clustering discretization (KMCD), ordinal
discretization (OD), fixed frequency discretization (FFD), non-
disjoint discretization (NDD), proportional discretization (PD),
weight proportional discretization (WPD), mean value and stan-
dard deviation discretization (MVSDD), based on the application
of continues entropy estimation. Firstly, we give the detailed
description about the concept of continuous entropy estimation.
Then, we introduce the nine different unsupervised discretiza-
tion methods. Finally, we conduct the estimation of continuous
entropy based on 15 probability density distributions, i.e., Beta,
Cauchy, Central Chi-Squared, Exponential, F, Gamma, Laplace,
Logistic, Lognormal, Normal, Rayleigh, Student’s-t, Triangular,
Uniform, and Weibull distributions. The experimental results
show that in comparison with the sophisticated discretization
methods-OD, FFD, NDD, PD, and WPD, EWD and EFD can
also the considerable estimation performances. Moreover, we also
illustrate the relationship between the size of training dataset and
the estimation performance.
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distribution; unsupervised discretization

I. INTRODUCTION

Entropy which has been proposed by C.E. Shannon [1],
[2] is always used to measure the amount of information
contained in a certain domian. It has a wide application in
many fields, e.g., decision tree generation [3], [4] and feature
subsect selection [5], [6], etc. For a specific learning problem,
the dataset is composed with several features (i.e., variables) of
which the values are discrete or continuous. “Discrete” refers
to the variables taking on categorical values and “continuous”
refers to the variables taking on integer or real values.

In statistics and machine learning, discretization refers to the
process of converting or partitioning continuous attributes, fea-
tures or variables to discretized or nominal attributes, features,
or variables. Over the years, many discretization methods
have been proposed and tested to show that discretization
helps improve the performance of learning methods and helps
understand the learning result. One of taxonomies [7] is to
classify primary discretization methods into supervised dis-
cretization and unsupervised discretization, where supervised
discretization uses the class or label information to select
the discretization cut points and unsupervised discretization

determines the cut points without the usage of class or label
information. In the setting of entropy estimation without class
information provided, supervised discretization may not be
competent to implement the entropy computation for continu-
ous variables. So, unsupervised discretization is considered as
a capable candidate to estimate the continuous entropy.

In our study, nine common unsupervised discretization
methods are introduced and employed as the competitors.
Equal width discretization (EWD) [8] and equal frequency
discretization (EFD) [9] are two mostly used and simplest
methods. The experimental observations in numerous litera-
tures show that the satisfactory performances and reasonable
effectiveness of EWD and EFD are not affected by their
directness and simplicity. K-means clustering discretization
(KMCD) [10] uses k-means clustering [11] to determine
intervals for the discrete variables. Ordinal discretization (OD)
[12], [13] aims at taking advantage of the ordering information
implicit in the continuous variables, so the ordering informa-
tion of continuous variables is preserved when a transforma-
tion of discretized data is carried out. Fixed frequency dis-
cretization (FFD) [7], non-disjoint discretization (NDD) [14],
proportional discretization (PD) [15], and weight proportional
discretization (WPD) [16] are designed intentionally for man-
aging the bias and variance generated during the discretization
of continuous variables. The gratifying experimental results
have been reported when these four discretization methods
are applied to naive Bayesian classifier [17], [18]. Mean
value and standard deviation discretization (MVSDD) [6] are
applied to feature selection and the better experimental results
are obtained when continuous variables are discretized by
MVSDD.

In this paper, we compare and analyze the performances
of these nine unsupervised discretization methods mentioned
above based on the application of continues entropy esti-
mation. Firstly, we give the detailed description about the
concept of continuous entropy estimation. Then, we introduce
the nine different unsupervised discretization methods. Finally,
we conduct the estimation of continuous entropy based on 15
probability density distributions, i.e., Beta, Cauchy, Central
Chi-Squared, Exponential, F, Gamma, Laplace, Logistic, Log-
normal, Normal, Rayleigh, Student’s-t, Triangular, Uniform,
and Weibull distributions. The experimental results show that
in comparison with the sophisticated discretization methods-
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TABLE I
THE DETAILED INFORMATION OF THESE NINE DISCRETIZATION METHODS

Discretization method | The number of intervals

The width of interval

Note

EWD k Zmax ~Tmin

w =

s Tn}s Tmax = max {T1,T2, - ,Tn},
and k is a user predefined parameter.

Tmin = min {x1,22,---

EFD k [n/k]

[u] denotes the rounding of the element u to the nearest integers towards
infinity.

KMCD k [n/k

The parameter k is determined by using the k-means clustering technology.

oD - -

OD firstly discretizes by using some primary discretization method (e.g.,
EWD, EFD, or KMCD). Then, the discretized attribute X* = {xf, x7,
-,y } is split with X3, (Gj=12,---,k—1).

FFD [n/m] 30

The empirical results show when m = 30, the better performance can be
obtained in naive Bayesian classifier context by managing the discretization
bias and variance.

NDD

Firstly, the K’ “atomic intervals” need to be generated and every “atomic
interval” contains m’ continuous observations. Then, a total of k “actual
intervals” can be constructed by combining three consecutive atomic

intervals.

PD vn

PD aims to resolve the conflict between variance and bias by setting
the interval size and number which are proportional to the number of

training instances.

WPD L

Mmin

2
Manint /M2, H4n
2

WPD weighs discretization variance reduction more than bias reduction by

setting a minimum interval size myin = 30 to make the probability

estimation more reliable.

MVSDD 3 -

The cut points of discretized intervals are ; — ao and p 4 ao.

OD, FFD, NDD, PD, and WPD, EWD and EFD can also
the considerable estimation performances. Moreover, we also
illustrate the relationship between the size of training dataset
and the estimation performance.

II. THE CONTINUOUS ENTROPY ESTIMATION

It is well acknowledged that Shannon entropy [1], [2] can
be implemented sophisticatedly and efficiently for the discrete
variables as the following Eq. (1):

H(X) =~ > p (@) Inlp (). 1)

where, let X be a discrete random variable taking a finite
number of possible values x1, xo, ---, =, with probabilities
p(x1), p(x2), -+, p(x,) respectively such that p (z;) > 0,

n

1,2,---,n and > p(z;)) = 1. In(u), u > 0 is
the natural logarithm \lv_hlich is the logarithm to the base
e, where e is an irrational constant approximately equal to
2.718. Note that pIn(p) = 0 when p = 0. However, many
learning tasks are often involved with the continuous variables.
The mathematical formula for continuous variables can be
summarized as following Eq. (2) by extending the discrete
entropy to continuous case:

H(X)=—[17 f (@) In[f (z)] dz, 2

where, let X be a continuous random variable taking the
probability density function f (x) such that jjo? f(z)dx =1.

7; =

From the Eq. (2), we can find that there are two main hand-
icaps when the entropy computation for continuous variables
is implemented: the unknown of probability density function
and the evaluation of integral paradigm. The main strategy for
overcoming these two difficulties in the entropy computation
of continuous variables is to discretize the continuous variables
into discrete ones and then calculate the discrete entropy
according to the Eq. (1).

III. NINE UNSUPERVISED DISCRETIZATION METHODS

In [19], He et al. summarized the nine different unsuper-
vised discretization methods. Different from their work, we
introduce these nine methods from the viewpoint of characters
of discretized intervals, including the number, width, specifica-
tion of intervals. We summarize these characters in TABLE 1.
For OD in TABLE I, we use the following Eq. (3) to estimation
the continuous entropy:

k—1

Z i) 3)
H(X) = H(X*) = =—5—=—
Meanwhile, we also consider the computational complexities
of these nine discretization methods. the computational com-
plexities of EWD, EFD, OD, FFD, NND, PD, WPD, and
MVSDD are O (nlogs n). And, the complexity of KMCD is

O (n**1log, n), where k is number of clusters.

IV. EXPERIMENTAL SETUP AND ANALYSIS

In this paper, in order to compare the estimation perfor-
mances of above-mentioned nine discretization methods, we
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TABLE 11
THE BENCHMARK 15 PROBABILITY DENSITY DISTRIBUTIONS
Num Distribution Density function Continuous entropy value Support interval
a—1(_pyB—1 In[B(a,B)]— (a—1)¥(a)— (f—1)T
1 Beta Fla)==2 B((la [3; a» 0,80 n[B(a,8)] = (@ = 1) ¥ (a) = (B—=1) ¥ (B) ze[0,1]
: t@+B-2)¥(a+5)
2 Cauchy flz)y=2 (ﬁ) JA>0 In (47X) z € (—o0, +00)
_kE ] _ =z
3 Chi-Squared | f (x) = % k>0 In[20 (k/2)]+ (1 — &) ¥ (k/2) + & x € [0, +00)
4 Exponential f(z)=Xexp(—Az), A >0 1—1In(N) z € [0, +00)
= B m[mB ()] 4 (- ) e () - () ()
5 F B(T‘T) (ng+nqz) 12 2 +n1+n2 v (nlgnQ EAS [07 +0o0)
niy > 0,n2 >0
6 Gamma f(z) =ak1t ;l:g(:) k>=0,0>0 k4 In6+In (I (k)] + (1 — k) ¥ (k) z € [0, +00)
7 Laplace f(z) = & exp (7‘13”‘)7MGR7b>0 In (2b) + 1 © € (—o0, +00)
8 Logistic f(z) = Lsech? (%) MERs=0 | In(s)+2 z € (—00, +00)
1 _ (nz—p)?
9 Lognormal f (=) wovar P [ 202 ] ’ 1+ 3In (27rc72) +u z € (0, +00)
weERG%=0
1 _(e=p)?
10 Normal f (=) Varo2 exp [ 202 ] ’ In (a 27re) z € (—o0, +00)
WER,G2>0
11 Rayleigh f(2) = Zoxp <7%),0>0 1+In (%) +2E z € [0, +00)
(102 /o)
) 1+z” /v v v
12| Sudentst | f(2) = ph A v 0 v () v (@] +m[veB (3, 3)] @ € (—o00, +00)
2(z—a)
T, a<xz<c
13 Triangular f(z)= { (b;(ab)fsa)’ - - In b;a +3 z € [a,b]
Taiey €SS )
14 Uniform fz) =32 In (b — a) z € [a,b]
13
: fla)y=%(5)F e /M7, ! A
15 Weibull AN ye (1—3)+In(2)+1 z € [0, +c0
A>0,k>0 2= 5)+In(3) ! )

select 15 true probability density distributions [19], [20] as
our testing-bed. The detailed information (including he density
functions, the continuous entropy values, and the correspond-
ing support intervals) of these 15 probability distributions are
listed in TABLE II.

Our experimental comparison is arranged as following pro-
cedures. Firstly, for every distribution with different dataset
size 10, 20, 30, - - -, 250, we randomly generate 250 samples.
Secondly, the estimated continuous entropy is computed ac-
cording to Eq. (1) by using these nine different discretization
methods. Thirdly, we record the estimated error. Fourthly, the
above-mentioned three procedures are repeated 100 times and
the average errors are plotted in Fig. 1.

Form Fig. 1, we can find that in comparison with the
sophisticated discretization methods-OD, FFD, NDD, PD, and
WPD, EWD and EFD can also the considerable estimation
performances. Because with the increasing of training samples,
the estimation performances of OD, FFD, NDD, PD, and WPD
all keep the trends of gradual increase after the training sample
reach some specific size. That is to say, OD, FFD, NDD, PD,
and WPD are inappropriate to compute the continuous entropy
for dataset with the large size.

V. CONCLUSION

In this paper, we compare and analyze the performances
of nine unsupervised discretization methods, i.e., EWD, EFD,
KMCD, OD, FFD, NDD, PD, WPD, and MVSDD, in the

application of continues entropy estimation based on 15 prob-
ability density distributions, i.e., Beta, Cauchy, Central Chi-
Squared, Exponential, F, Gamma, Laplace, Logistic, Lognor-
mal, Normal, Rayleigh, Student’s-t, Triangular, Uniform, and
Weibull distributions. The experimental results give our an
important and useful insight to the application of these dis-
cretization methods when computing the continuous entropy.
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