Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

A Linear Time Algorithm for Cubic Subgraph of Halin Graphs

Dingjun Lou and Junfu Liu
Department of Computer Science
Sun Yat-sen University
Guangzhou 510275, P.R. China
Email: issldj@mail.sysu.edu.cn

Abstract—In this paper, we design a linear time algorithm to
determine whether a Halin graph H has a cubic subgraph H*.
If H has, then the algorithm finds a cubic subgraph H* in H;
otherwise the algorithm answers “No”.

Keywords-Linear time algorithm; cubic subgraph; Halin
graph

L INTRODUCTION

A Halin graph H is defined as follows: First, we embed a
tree T in the plane such that each inner vertex of T has
degree at least 3; then we draw a cycle C through all leaves
of T to form a planar graph. Then H=T U C is called a Halin
graph, where T is called the characteristic tree of H and C is
called the accompanying cycle of H. The simplest Halin
graphs are wheels, where T has only one inner vertex and
the other vertices are leaves of T. Suppose a Halin graph H is
not a wheel. If w is an inner vertex of T such that all

neighbours V|,V,. ..., Vi of w except one neighbour are
leaves of T, then the induced subgraph
H[{w} U {V,,V,, ...,V }]is called a fan of H and w is called

the center of the fan, where the induced subgraph G[S] of a
graph G on a subset S of vertices in G is a subgraph of G
consisting of the vertices in S and the edges of G with both
ends in S.

Halin graphs were introduced by German mathematician
Halin [6] as minimally 3-connected planar graphs. It can be
used as a model of a network with minimum cost and fault
tolerance.

A graph G is Hamiltonian if G has a cycle through all
vertices of G. A graph G is 1-Hamiltonian, if G is
Hamiltonian and deleting each vertex from G, the graph is
still Hamiltonian. A graph G is Hamiltonian connected if, for
each pair of vertices u and v, there is a Hamiltonian path P
from u to v in G, where P goes through all vertices of G. A
graph G is pancyclic, if G has a cycle C of length L for each
integer L such that 3 <L <|V(QG)|.

Bondy [2] proves that every Halin graph H is 1-
Hamiltonian. Then Bondy and Lovész [3] prove that, for
each integer L such that 3 <L <|V(H)| except possibly for an
even integer, a Halin graph H has a cycle of length L. Lou [8]
proves that every Halin graph is Hamiltonian connected.

Let G be a weighted graph with each edge having a
positive weight. The weight of a subgraph K of G is the sum
of weights of all edges of K. The Traveling Salesman

Problem is to find a Hamiltonian cycle C with minimum
weight among all Hamiltonian cycles in G.

The TSP problem for a general graph is an NP—hard
problem. However, Cornuejols, Naddef and Pulleyblank [4]
give a linear time algorithm to solve TSP for a weighted
Halin graph. Li, Lou and Lu [7] design a linear time
algorithm to find a Hamiltonian path with minimum weight
between each pair of vertices in a weighted Halin graph.

The Bottleneck TSP of a weighted graph G is to find a
Hamiltonian cycle C with the weight of each edge of C less
than or equal to a given number B. The Bottleneck TSP is
also an NP—Complete problem.

Phillips, Punnen and Kabadi [11] design a linear time
algorithm to solve the BTSP for a weighted Halin graph. Lou
and Dou [10] design a linear time algorithm to find a
Hamiltonian cycle satisfying the bottleneck restriction and
having minimum weight in a weighted Halin graph.

Lou and Zhu [9] also give a linear time algorithm to
solve another NPC problem, the Max-leaves Spanning Tree
Problem, for Halin graphs.

The problem to determine whether a general graph G has
a cubic subgraph G* such that for every vertex w of G*,

dg.(W) =3 is an NPC problem (see [5]). However, for a

Halin graph H, the problem to determine whether H has a
cubic subgraph H* can be solved in linear time. In this paper,
we design a linear time algorithm to determine whether a
Halin graph H has a cubic subgraph H*. If H has, then the
algorithm finds a cubic subgraph H*; otherwise the
algorithm answers “No”. We also prove the correctness of
the algorithm and analyze the time complexity of the
algorithm. The algorithm is optimal.

In [4], it is mentioned that given a Halin graph H, we can
find the characteristic tree T and accompanying cycle C in
O(n) time. The main idea of this algorithm is as following:

1. Find a planar embedding H’ of H;

2. For each face F of H’, search the boundary cycle C of
F:

If all vertices on C have degree 3 and deleting the edges
of C from H, the resulting graph is a tree T, then T is the
characteristic tree and C is the accompanying cycle.

For terminology and notation not defined in this paper,
the reader is referred to [1]

II. THE ALGORITHM

First, we give an algorithm to determine whether a Halin
graph H has a cubic subgraph H* as following:

Published by Atlantis Press, Paris, France.
© the authors

0386

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Algorithm 1:

1. Choose an inner vertex u as the root of the characteristic
tree T of the input Halin graph H;

2. Do the postorder traversal of T rooted at u as following:

3. If the currently visited vertex v is the center of a fan but
not u, then

(3.1) If v has at least 4 children in the current T, then H has
no cubic subgraph, and the algorithm answers “No” and
exits; else

(3.2) If v has precisely 3 children in the current T, then the
algorithm deletes the edge between v and its father in T; else
(3.3) If v has precisely 2 children in the current T, then the
algorithm keeps the edge between v and its father in T; else
4. If the currently visited vertex v is an inner vertex of the
original T but not u, then

(4.1) If v has at least 4 children in the current T, then H has
no cubic subgraph, and the algorithm answers “No” and
exits; else

(4.2) If v has precisely 3 children in the current T, then the
algorithm deletes the edge between v and its father in T; else
(4.3) If v has precisely 2 children in the current T, then the
algorithm keeps the edge between v and its father in T; else
(4.4) If v has precisely 1 child in the current T, then H has
no cubic subgraph, and the algorithm answers “No” and
exits; else

(4.5) If v has no child in the current T, then the algorithm
deletes the edge between v and its father in T and also
deletes v from T; else

5. If the currently visited vertex v is u, then

(5.1) If v has precisely 3 children or no child (if no child, the
algorithm deletes v from T), then H has a cubic subgraph H*
=T U C, where T is currently obtained by the algorithm.
(5.2) Otherwise H has no cubic subgraph, and the algorithm
answers “No” and exits.

III. CORRECTNESS AND TIME COMPLEXITY

Next, we prove the correctness of Algorithm 1.

Theorem 1: If a Halin graph H has a cubic subgraph, then
Algorithm 1 succeeds to find a cubic subgraph H* of H;
otherwise Algorithm 1 gives answer “No” .

Proof. Let u be the root of the characteristic tree T of H with
the root u at the top and the tree T below. Let the level
number of the lowest leaves in T be 0, the level numbers
from bottom to topin Tbe 0, 1, 2, ..., L, where L is the level
number of u. If a vertex v is at level 1, then all of its children
are at level | —1. We proceed by induction on level number 1
to prove that when Algorithm 1 visits a vertex v at level 1,
either the degree of v becomes 3 or 0 (if 0, then v is deleted
from T) or H has no cubic subgraph. We prove Claim 1 first.

Claim 1: If H has a cubic subgraph H*, then all leaves of the
original T are in H*.

Since in H, every leaf of T has degree 3, if T has a leaf x
not belonging to H*, then the leaf y of T adjacent to x in H
has degree less than 3, and hence y does not belong to H*. If
y does not belong to H*, then the leaf z of T adjacent to y in
H will have degree less than 3, and hence z does not belong
to H*, and so on. Then all leaves of T do not belong to H*.

But deleting all leaves from T, only an isolated vertex of T
remains or T has a vertex of degree 1 (a new leaf). The new
leaf does not belong to H* since it has degree 1. Repeatedly
deleting new leaf from T, in the end, only one isolated vertex
of T remains. So H has no cubic subgraph. By the above
argument, if H has a cubic subgraph, then all leaves of T are
in H*.

Now we make induction on the level number 1 of currently
visited vertex v of T.

When 1 = 0, the vertex v at level 0 is a leaf of the original
T. When Algorithm 1 visits v, it does not do anything, and v
has degree 3in TUC

Assume that when 1 << k and Algorithm 1 visits a vertex v
at level 1, either the degree of v becomes 3 or 0 (if 0, v is
deleted from T) or H has no cubic subgraph.

If H has no cubic subgraph, according to Algorithm 1, it
will not visit any vertex at level k+1 in T. Now suppose that
Algorithm 1 visits a vertex v at level k+1 in T. We have 3
cases:

Case 1: vis a leaf of the original T.

Then Algorithm 1 does nothing, so v remains in T and has
degree 3in TUC.

Case 2: v is an inner vertex of the original T but not the root
u.

By induction hypothesis, all descendants of v have degree
3 or 0 (if 0, it is deleted from T) by the process of Algorithm
1. Suppose that after the process of Algorithm 1, v has p

children W,,W,, ..., W

Case 2.1):p = 4.
But in H*, v has to be of degree 3. So one edge between v

p-

and its child W, must be deleted. By induction hypothesis,

W, and all its descendants (including some leaves of the
original T) have degree 3 in current T U C. Deleting the edge
VW, the degree of W, becomes less than 3. So the edges

between Wq and its children must be deleted. Then the

children of W, have degree less than 3 respectively and the

edges between them and their children must be deleted.
Repeatedly to do this, in the end, one leaf of the original T
which is a descendant of v has degree less than 3 and must
be deleted from H*. By Claim 1, H has no cubic subgraph.
Case (2.2):p=3.

In this case, Algorithm 1 deletes the edge between v and
its father in T, so v has degree 3 in the current T.
Case (2.3):p=2.

Now Algorithm 1 keeps the edge between v and its father,
so v has degree 3 in the current T.
Case 24)p=1.

Including the edge between v and its father, v has degree 2,
so v does belong to H*, and we must delete the edge between

v and its child W, - Applying the argument in Case (2.1), W,

and all its descendants (including some leaves of the original
T) must be deleted from H*, by Claim 1, H has no cubic
subgraph.

Published by Atlantis Press, Paris, France.
© the authors

0387

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Case (2.5):p=0.

Now Algorithm 1 deletes the edge between v and its father,
so v has degree 0 and is deleted from H*.

Case 3: vis the rootu of T.

Suppose that after the process of Algorithm 1, v has p
children in the current T.

Case (3.1):p=3or0.

By induction hypothesis, the descendants of v in the
original T have level number 1 < k+1, their degrees are
either 3 or 0 (if 0, it is deleted from T) and all leaves of the
original T has degree 3. So H has a cubic subgraph H* =T
U C, where T is currently obtained (by deleting v if v has 0
child).

Case (3.2):p = 3 or 0.
Then Algorithm 1 deletes at least one edge between v and

its child W,. By the argument of Case (2.1), W, and all its
descendants (including some leaves of the original T) must

be deleted from H*, by Claim 1, H does not have cubic
subgraph. []

Now we analyze the time complexity of Algorithm 1.

Theorem 2: In the worst case, Algorithm 1 has time
complexity O(n), where n is the number of vertices of H.

Proof. Algorithm 1 does postorder traversal of the
characteristic tree T and visits each vertex once. When it
visits a leaf of T, it does nothing. When it visits an inner
vertex v of T, it visits at most all vertices adjacent to v once,

and it needs O(dT (V)) time. For visiting the whole tree T, it
needs O(Zvevm d; (V)) = 02m(T)) = O(2(n— 1)) = O(n)

time, where m(T) is the number of edges of T and n = [V(T)|
=[VH).]

The space that Algorithm 1 needs is also O(n).

(1
(2]

B3]
(4]

(5]

(6]

(7]

(8]
[]

[10]

(1]

REFERENCES

J. A. Bondy and U. S. R. Murty, Graph Theory with Applications,
Macmillan Press, London, 1976.

J. A. Bondy, “Pancyclic graphs: Recent Results” , Infinite and
Finite Sets, Coll. Math. Soc. Jdnos Bolyai, vol. 10, pp. 181—187,
1975.

J. A. Bondy and L. Lovész, “Lengths of cycles in Halin graphs” ,
Journal of Graph Theory, vol. 8, pp. 397—410, 1985.

G. Cornuejols, D. Naddef and W. Pulleyblank, “Halin graphs and
the traveling salesman problem” , Math. Programming, vol. 16, pp.
287—294, 1983.

M. R. Garey and D. S. Johnson, Computers and Intractability —A
Guide to the Theory of NP-Completeness, W. H. Freeman and
Company, 1979.

R. Halin, “ Studies on minimally n-connected graphs s
Combinatorial Mathematics and its Applications, Academic Press,
London, pp. 129—136, 1971

Y. Li, D. Lou and Y. Lu, “Algorithms for the optimal Hamiltonian
path in Halin graphs” , Ars Combinatoria, vol. 87, pp. 235—255,
2008.

Dingjun Lou, “Hamiltonian paths in Halin graphs” , Mathematica
Applicata (Chinese) , vol. 8, pp. 158 —160, 1995.

Dingjun Lou and Huiquan Zhu, “A note on max-leaves spanning
tree problem in Halin graphs ” , Australasian Journal of
Combinatorics, vol. 29, pp. 95—97, 2004.

Dingjun Lou and Hongke Dou, “A linear time algorithm for
optimal bottleneck traveling salesman problem on a Halin graph” ,
Proc. 2011 International Conference on Computer, Communication
and Information Technology (ICCCIT 2011), 2011, pp. 60—62.

J. M. Phillips, P. Punnen and S. N. Kabadi, “A linear time
algorithm for the bottleneck traveling salesman problem on a Halin

graph,” , Information Processing Letter, vol. 67, pp. 105—110,
1998.

Published by Atlantis Press, Paris, France.

© the authors
0388

