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Abstract—In this paper, we design a linear time algorithm  to 
determine whether a Halin graph H has a cubic subgraph H*. 
If H has, then the algorithm finds a cubic subgraph H* in H; 
otherwise the algorithm answers  “No”. 
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I.  INTRODUCTION 

A Halin graph H is defined as follows: First, we embed a 
tree T in the plane such that each inner vertex of T has 
degree at least 3; then we draw a cycle C through all leaves 
of T to form a planar graph. Then H = T∪C is called a Halin 
graph, where T is called the characteristic tree of H and C is 
called the accompanying cycle of H. The simplest Halin 
graphs are wheels, where T has only one inner vertex and  
the other vertices are leaves of T. Suppose a Halin graph H is 
not a wheel. If w is an inner vertex of T such that all 

neighbours ., 21 vv ..., kv  of w except one neighbour are 

leaves of T, then the induced subgraph 

H[{w}∪{ ,, 21 vv …, kv }] is called a fan of H and w is called 

the center of the fan, where the induced subgraph G[S] of a 
graph G on a subset S of vertices in G is a subgraph of G 
consisting of the vertices in S and the edges of G with both 
ends in S. 

Halin graphs were introduced by German mathematician 
Halin [6] as  minimally 3-connected planar graphs. It can be 
used as a model of a network with  minimum cost  and fault 
tolerance. 

A graph G is  Hamiltonian if G has a cycle through all 
vertices of G. A  graph G is 1-Hamiltonian,  if G is 
Hamiltonian and deleting each vertex from G, the graph is 
still Hamiltonian. A graph G is Hamiltonian connected if, for 
each pair of vertices u and v, there is a Hamiltonian path P 
from u to v in G, where P  goes through all vertices of G. A 
graph G is pancyclic, if G has a cycle C of length  L for each 
integer L such that 3 ≤L ≤ |V(G)|. 

Bondy [2] proves that every Halin graph H is 1-
Hamiltonian. Then Bondy and Lovász [3] prove that, for 
each integer L such that 3 ≤ L ≤ |V(H)| except possibly for an 
even integer, a Halin graph H has a cycle of length L. Lou [8] 
proves that every Halin graph is Hamiltonian connected. 

Let G be a weighted graph with each edge having a 
positive weight. The weight of a subgraph K of G is the sum 
of weights of all edges of K. The Traveling Salesman 

Problem is to find a Hamiltonian cycle C with minimum 
weight among all Hamiltonian cycles in G.  

The TSP problem for a general graph is an NP―hard 
problem. However, Cornuejols, Naddef and Pulleyblank [4] 
give a linear time algorithm to solve TSP for a weighted 
Halin graph. Li, Lou and Lu [7] design a linear time 
algorithm to find a Hamiltonian path with minimum weight 
between each pair of vertices in a weighted Halin graph. 

The Bottleneck TSP  of a weighted graph G is to find a 
Hamiltonian cycle C with the weight of each edge of C less 
than or equal to a given number B. The Bottleneck TSP is 
also an NP―Complete problem. 

Phillips, Punnen and Kabadi [11] design a linear time 
algorithm to solve the BTSP for a weighted Halin graph. Lou 
and Dou [10] design a linear time algorithm to find a 
Hamiltonian cycle satisfying the bottleneck restriction and 
having minimum weight in a weighted Halin graph.  

Lou and Zhu [9] also give a linear time algorithm  to 
solve another NPC  problem, the Max-leaves Spanning Tree 
Problem,  for Halin graphs. 

The problem to determine whether a general graph G has 
a cubic subgraph G* such that for every vertex w of G*,  

)(* wdG  = 3 is an NPC problem (see [5]). However, for a 

Halin graph H, the problem to determine whether H has a 
cubic subgraph H* can be solved in linear time. In this paper, 
we design a linear time algorithm to determine whether a 
Halin graph H has a cubic subgraph H*.  If H has, then the 
algorithm finds a cubic subgraph H*; otherwise the 
algorithm answers “No”. We also prove the correctness of 
the algorithm and analyze the time complexity of the 
algorithm. The algorithm is optimal.  

In [4], it is mentioned that given a Halin graph H, we can 
find the characteristic tree T and accompanying cycle C in 
O(n) time. The main idea of this algorithm is as following: 

1. Find a planar embedding H’ of H; 
2. For each face F of H’, search the boundary cycle C of 

F: 
 If  all vertices on C have degree 3 and deleting the edges 

of C from H, the resulting graph is a tree T, then T is the 
characteristic tree and C is the accompanying cycle. 

For terminology and notation not defined in this paper, 
the reader is referred to [1] 

II. THE ALGORITHM 

First, we give an algorithm to determine whether a Halin 
graph H has a cubic subgraph H* as following: 
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Algorithm 1: 
1. Choose an inner vertex u as the root of the characteristic 
tree T of the input Halin graph H; 
2. Do the postorder traversal of T rooted at u as following: 
3. If the currently visited vertex v is the center of a fan but 
not u, then 
(3.1) If v has at least 4 children in the current T, then H has 
no cubic subgraph,  and the algorithm  answers “No” and 
exits; else 
(3.2) If v has precisely 3 children in the current T, then the 
algorithm deletes the edge between v and its father in T; else 
(3.3) If v has precisely 2 children in the current T, then the 
algorithm keeps the edge between v and its father in T; else 
4. If the currently visited vertex v  is an inner vertex of the 
original T but not u, then  
(4.1) If v has at least 4 children in the current T, then H has 
no cubic subgraph, and the algorithm answers “No”and 
exits; else 
(4.2) If v has precisely 3 children in the current T, then the 
algorithm deletes the edge between v and its father in T; else 
(4.3) If v has precisely 2 children in the current T, then the 
algorithm keeps the edge between v and its father in T; else 
(4.4) If v has precisely 1 child in the current T, then H  has 
no cubic subgraph, and the algorithm answers “No”and 
exits; else 
(4.5) If v has no child in the current T,  then the algorithm 
deletes the edge between v and its father in T and also 
deletes v from T; else 
5. If the currently visited vertex v is u, then  
(5.1) If v has precisely 3 children or no child ( if no child, the 
algorithm deletes v from T), then  H has a cubic subgraph H* 
=T ∪ C , where T is currently obtained by the algorithm. 
(5.2) Otherwise H has no cubic subgraph, and the algorithm 
answers “No”and exits. 

III. CORRECTNESS AND  TIME COMPLEXITY 

Next, we prove the correctness of  Algorithm 1. 
 
Theorem 1:  If a Halin graph H  has a cubic subgraph, then 
Algorithm 1 succeeds to find a cubic subgraph H* of H; 
otherwise Algorithm 1 gives answer “No”. 
Proof. Let u be the root of  the characteristic tree T of H with 
the root u at the top and the tree T below. Let the level 
number of the lowest leaves in T be 0, the level numbers 
from bottom to top in T be 0, 1, 2, …, L, where L is the level 
number of u. If a vertex v is at level l, then all of its children 
are at level l―1. We proceed by induction on level number l 
to prove that when Algorithm 1 visits a vertex v at level l, 
either the degree of v becomes 3 or 0 (if 0, then v is deleted 
from T) or H has no cubic subgraph. We prove Claim 1 first. 
Claim 1: If H has a cubic subgraph H*, then all leaves of the 
original T are in H*. 

Since in H, every leaf of T has degree 3, if T has a leaf x 
not belonging to H*, then the leaf y of T adjacent to x in H 
has degree less than 3, and hence y does not belong to H*. If 
y does not belong to H*, then the leaf z of T adjacent to y in 
H will  have degree less than 3,  and hence z does not belong 
to H*, and so on. Then all leaves of T do not belong to H*. 

But deleting all leaves from T, only an isolated vertex of T 
remains or T has a vertex of degree 1 (a new leaf). The new 
leaf does not belong to H* since it has degree 1. Repeatedly 
deleting new leaf from T, in the end, only one isolated vertex 
of T remains. So H has no cubic subgraph. By the above 
argument, if H has a cubic subgraph, then all leaves of T are 
in H*. 

Now we make induction on the level number l of currently 
visited vertex v of T. 

When l = 0, the vertex v at level 0 is a leaf of the original 
T.  When Algorithm 1 visits v, it does not do anything, and v 
has degree 3 in T∪C 

Assume that when l ≤ k and Algorithm 1 visits a vertex v 
at level l, either  the degree of v becomes 3 or 0 (if 0,  v is 
deleted from T) or H has no cubic subgraph.  

If H has no cubic subgraph, according to Algorithm 1, it 
will not visit any vertex at level k+1 in T. Now suppose that 
Algorithm 1 visits a vertex v at level k+1 in T. We have 3 
cases: 
Case 1: v is a leaf of  the original T. 

Then Algorithm 1 does nothing, so v remains in T and has 
degree 3 in T∪C. 
Case 2: v is an inner vertex of the original T but not the root 
u. 

By induction hypothesis, all descendants of v have degree 
3 or 0 (if 0, it is deleted from T) by the process of Algorithm 
1. Suppose that after the process of Algorithm 1, v has p 

children ,, 21 ww …, pw . 

Case (2.1): p ≥ 4. 
But in H*, v has to be of degree 3. So one edge between v 

and its child qw  must be deleted. By induction hypothesis,  

qw  and all its descendants (including some leaves of the 

original T) have degree 3 in current T∪C. Deleting the edge 

v qw , the degree of qw  becomes less than 3. So the edges 

between qw  and its children must be deleted. Then the 

children of qw  have degree less than 3 respectively and the 

edges between them and their children must be deleted. 
Repeatedly to do this, in the end, one leaf  of the original T 
which is a descendant of v has degree less than 3 and must 
be deleted from H*. By Claim 1, H has no cubic subgraph. 
Case (2.2): p = 3. 
    In this case, Algorithm 1 deletes the edge between v and 
its father in T, so v has degree 3 in the current T. 
Case (2.3): p = 2. 

Now Algorithm 1 keeps the edge between v and its father, 
so v has degree 3 in the current T. 
Case (2.4) p = 1. 
    Including the edge between v and its father, v has degree 2, 
so v does belong to H*, and we must delete the edge between 

v and its child qw . Applying the argument in Case (2.1), qw  

and all its descendants (including some leaves of the original 
T) must be deleted from H*, by Claim 1, H has  no cubic 
subgraph. 
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Case (2.5): p = 0. 
Now Algorithm 1 deletes the edge between v and its father, 

so v has degree 0 and is deleted from H*. 
Case 3: v is the root u of T. 

Suppose that after the process of Algorithm 1, v has  p 
children in the current T. 
Case (3.1): p = 3 or 0. 
    By induction hypothesis, the descendants of v in the 
original T have level number l  < k+1,  their degrees are 
either 3 or 0 (if 0, it is deleted from T) and all leaves of the 
original T has degree 3. So H  has a cubic subgraph H* = T
∪ C, where T is currently obtained (by deleting v if v has 0 
child). 
Case (3.2): p ≠ 3 or 0. 

Then Algorithm 1 deletes at least one edge between v and 

its child qw . By the argument of Case (2.1),  qw  and all its 

descendants (including some leaves of the original T) must 
be deleted from H*, by Claim 1, H does not have cubic 
subgraph.   [] 
 

Now we analyze the time complexity of Algorithm 1. 
 
Theorem 2: In the worst case, Algorithm 1 has time 
complexity O(n), where n is the number of vertices of  H. 
Proof.  Algorithm 1 does postorder traversal of the 
characteristic tree T and visits each vertex once. When it 
visits a leaf of T, it does nothing. When it visits an inner 
vertex v of T,  it visits at most all vertices adjacent to v  once,  

and it needs O( )(vdT ) time. For visiting the whole tree T, it 

needs O( ∈ )(
)(

TVv T vd ) = O(2m(T)) = O(2(n―1)) = O(n) 

time, where m(T) is the number of edges of T and n = |V(T)| 
= |V(H)|.    [] 
 

The space that Algorithm 1 needs is also O(n). 
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