

A Linear Time Algorithm for Cubic Subgraph of Halin Graphs

Dingjun Lou and Junfu Liu
Department of Computer Science

Sun Yat-sen University
Guangzhou 510275，P. R. China
Email: issldj@mail.sysu.edu.cn

Abstract—In this paper, we design a linear time algorithm to
determine whether a Halin graph H has a cubic subgraph H*.
If H has, then the algorithm finds a cubic subgraph H* in H;
otherwise the algorithm answers “No”.

Keywords-Linear time algorithm; cubic subgraph; Halin
graph

I. INTRODUCTION

A Halin graph H is defined as follows: First, we embed a
tree T in the plane such that each inner vertex of T has
degree at least 3; then we draw a cycle C through all leaves
of T to form a planar graph. Then H = T∪C is called a Halin
graph, where T is called the characteristic tree of H and C is
called the accompanying cycle of H. The simplest Halin
graphs are wheels, where T has only one inner vertex and
the other vertices are leaves of T. Suppose a Halin graph H is
not a wheel. If w is an inner vertex of T such that all

neighbours ., 21 vv ..., kv of w except one neighbour are

leaves of T, then the induced subgraph

H[{w}∪{ ,, 21 vv …, kv }] is called a fan of H and w is called

the center of the fan, where the induced subgraph G[S] of a
graph G on a subset S of vertices in G is a subgraph of G
consisting of the vertices in S and the edges of G with both
ends in S.

Halin graphs were introduced by German mathematician
Halin [6] as minimally 3-connected planar graphs. It can be
used as a model of a network with minimum cost and fault
tolerance.

A graph G is Hamiltonian if G has a cycle through all
vertices of G. A graph G is 1-Hamiltonian, if G is
Hamiltonian and deleting each vertex from G, the graph is
still Hamiltonian. A graph G is Hamiltonian connected if, for
each pair of vertices u and v, there is a Hamiltonian path P
from u to v in G, where P goes through all vertices of G. A
graph G is pancyclic, if G has a cycle C of length L for each
integer L such that 3 ≤L ≤ |V(G)|.

Bondy [2] proves that every Halin graph H is 1-
Hamiltonian. Then Bondy and Lovász [3] prove that, for
each integer L such that 3 ≤ L ≤ |V(H)| except possibly for an
even integer, a Halin graph H has a cycle of length L. Lou [8]
proves that every Halin graph is Hamiltonian connected.

Let G be a weighted graph with each edge having a
positive weight. The weight of a subgraph K of G is the sum
of weights of all edges of K. The Traveling Salesman

Problem is to find a Hamiltonian cycle C with minimum
weight among all Hamiltonian cycles in G.

The TSP problem for a general graph is an NP―hard
problem. However, Cornuejols, Naddef and Pulleyblank [4]
give a linear time algorithm to solve TSP for a weighted
Halin graph. Li, Lou and Lu [7] design a linear time
algorithm to find a Hamiltonian path with minimum weight
between each pair of vertices in a weighted Halin graph.

The Bottleneck TSP of a weighted graph G is to find a
Hamiltonian cycle C with the weight of each edge of C less
than or equal to a given number B. The Bottleneck TSP is
also an NP―Complete problem.

Phillips, Punnen and Kabadi [11] design a linear time
algorithm to solve the BTSP for a weighted Halin graph. Lou
and Dou [10] design a linear time algorithm to find a
Hamiltonian cycle satisfying the bottleneck restriction and
having minimum weight in a weighted Halin graph.

Lou and Zhu [9] also give a linear time algorithm to
solve another NPC problem, the Max-leaves Spanning Tree
Problem, for Halin graphs.

The problem to determine whether a general graph G has
a cubic subgraph G* such that for every vertex w of G*,

)(* wdG = 3 is an NPC problem (see [5]). However, for a

Halin graph H, the problem to determine whether H has a
cubic subgraph H* can be solved in linear time. In this paper,
we design a linear time algorithm to determine whether a
Halin graph H has a cubic subgraph H*. If H has, then the
algorithm finds a cubic subgraph H*; otherwise the
algorithm answers “No”. We also prove the correctness of
the algorithm and analyze the time complexity of the
algorithm. The algorithm is optimal.

In [4], it is mentioned that given a Halin graph H, we can
find the characteristic tree T and accompanying cycle C in
O(n) time. The main idea of this algorithm is as following:

1. Find a planar embedding H’ of H;
2. For each face F of H’, search the boundary cycle C of

F:
 If all vertices on C have degree 3 and deleting the edges

of C from H, the resulting graph is a tree T, then T is the
characteristic tree and C is the accompanying cycle.

For terminology and notation not defined in this paper,
the reader is referred to [1]

II. THE ALGORITHM

First, we give an algorithm to determine whether a Halin
graph H has a cubic subgraph H* as following:

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0386

Algorithm 1:
1. Choose an inner vertex u as the root of the characteristic
tree T of the input Halin graph H;
2. Do the postorder traversal of T rooted at u as following:
3. If the currently visited vertex v is the center of a fan but
not u, then
(3.1) If v has at least 4 children in the current T, then H has
no cubic subgraph, and the algorithm answers “No” and
exits; else
(3.2) If v has precisely 3 children in the current T, then the
algorithm deletes the edge between v and its father in T; else
(3.3) If v has precisely 2 children in the current T, then the
algorithm keeps the edge between v and its father in T; else
4. If the currently visited vertex v is an inner vertex of the
original T but not u, then
(4.1) If v has at least 4 children in the current T, then H has
no cubic subgraph, and the algorithm answers “No”and
exits; else
(4.2) If v has precisely 3 children in the current T, then the
algorithm deletes the edge between v and its father in T; else
(4.3) If v has precisely 2 children in the current T, then the
algorithm keeps the edge between v and its father in T; else
(4.4) If v has precisely 1 child in the current T, then H has
no cubic subgraph, and the algorithm answers “No”and
exits; else
(4.5) If v has no child in the current T, then the algorithm
deletes the edge between v and its father in T and also
deletes v from T; else
5. If the currently visited vertex v is u, then
(5.1) If v has precisely 3 children or no child (if no child, the
algorithm deletes v from T), then H has a cubic subgraph H*
=T ∪ C , where T is currently obtained by the algorithm.
(5.2) Otherwise H has no cubic subgraph, and the algorithm
answers “No”and exits.

III. CORRECTNESS AND TIME COMPLEXITY

Next, we prove the correctness of Algorithm 1.

Theorem 1: If a Halin graph H has a cubic subgraph, then
Algorithm 1 succeeds to find a cubic subgraph H* of H;
otherwise Algorithm 1 gives answer “No”.
Proof. Let u be the root of the characteristic tree T of H with
the root u at the top and the tree T below. Let the level
number of the lowest leaves in T be 0, the level numbers
from bottom to top in T be 0, 1, 2, …, L, where L is the level
number of u. If a vertex v is at level l, then all of its children
are at level l―1. We proceed by induction on level number l
to prove that when Algorithm 1 visits a vertex v at level l,
either the degree of v becomes 3 or 0 (if 0, then v is deleted
from T) or H has no cubic subgraph. We prove Claim 1 first.
Claim 1: If H has a cubic subgraph H*, then all leaves of the
original T are in H*.

Since in H, every leaf of T has degree 3, if T has a leaf x
not belonging to H*, then the leaf y of T adjacent to x in H
has degree less than 3, and hence y does not belong to H*. If
y does not belong to H*, then the leaf z of T adjacent to y in
H will have degree less than 3, and hence z does not belong
to H*, and so on. Then all leaves of T do not belong to H*.

But deleting all leaves from T, only an isolated vertex of T
remains or T has a vertex of degree 1 (a new leaf). The new
leaf does not belong to H* since it has degree 1. Repeatedly
deleting new leaf from T, in the end, only one isolated vertex
of T remains. So H has no cubic subgraph. By the above
argument, if H has a cubic subgraph, then all leaves of T are
in H*.

Now we make induction on the level number l of currently
visited vertex v of T.

When l = 0, the vertex v at level 0 is a leaf of the original
T. When Algorithm 1 visits v, it does not do anything, and v
has degree 3 in T∪C

Assume that when l ≤ k and Algorithm 1 visits a vertex v
at level l, either the degree of v becomes 3 or 0 (if 0, v is
deleted from T) or H has no cubic subgraph.

If H has no cubic subgraph, according to Algorithm 1, it
will not visit any vertex at level k+1 in T. Now suppose that
Algorithm 1 visits a vertex v at level k+1 in T. We have 3
cases:
Case 1: v is a leaf of the original T.

Then Algorithm 1 does nothing, so v remains in T and has
degree 3 in T∪C.
Case 2: v is an inner vertex of the original T but not the root
u.

By induction hypothesis, all descendants of v have degree
3 or 0 (if 0, it is deleted from T) by the process of Algorithm
1. Suppose that after the process of Algorithm 1, v has p

children ,, 21 ww …, pw .

Case (2.1): p ≥ 4.
But in H*, v has to be of degree 3. So one edge between v

and its child qw must be deleted. By induction hypothesis,

qw and all its descendants (including some leaves of the

original T) have degree 3 in current T∪C. Deleting the edge

v qw , the degree of qw becomes less than 3. So the edges

between qw and its children must be deleted. Then the

children of qw have degree less than 3 respectively and the

edges between them and their children must be deleted.
Repeatedly to do this, in the end, one leaf of the original T
which is a descendant of v has degree less than 3 and must
be deleted from H*. By Claim 1, H has no cubic subgraph.
Case (2.2): p = 3.
 In this case, Algorithm 1 deletes the edge between v and
its father in T, so v has degree 3 in the current T.
Case (2.3): p = 2.

Now Algorithm 1 keeps the edge between v and its father,
so v has degree 3 in the current T.
Case (2.4) p = 1.
 Including the edge between v and its father, v has degree 2,
so v does belong to H*, and we must delete the edge between

v and its child qw . Applying the argument in Case (2.1), qw

and all its descendants (including some leaves of the original
T) must be deleted from H*, by Claim 1, H has no cubic
subgraph.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0387

Case (2.5): p = 0.
Now Algorithm 1 deletes the edge between v and its father,

so v has degree 0 and is deleted from H*.
Case 3: v is the root u of T.

Suppose that after the process of Algorithm 1, v has p
children in the current T.
Case (3.1): p = 3 or 0.
 By induction hypothesis, the descendants of v in the
original T have level number l < k+1, their degrees are
either 3 or 0 (if 0, it is deleted from T) and all leaves of the
original T has degree 3. So H has a cubic subgraph H* = T
∪ C, where T is currently obtained (by deleting v if v has 0
child).
Case (3.2): p ≠ 3 or 0.

Then Algorithm 1 deletes at least one edge between v and

its child qw . By the argument of Case (2.1), qw and all its

descendants (including some leaves of the original T) must
be deleted from H*, by Claim 1, H does not have cubic
subgraph. []

Now we analyze the time complexity of Algorithm 1.

Theorem 2: In the worst case, Algorithm 1 has time
complexity O(n), where n is the number of vertices of H.
Proof. Algorithm 1 does postorder traversal of the
characteristic tree T and visits each vertex once. When it
visits a leaf of T, it does nothing. When it visits an inner
vertex v of T, it visits at most all vertices adjacent to v once,

and it needs O()(vdT) time. For visiting the whole tree T, it

needs O( ∈)(
)(

TVv T vd) = O(2m(T)) = O(2(n―1)) = O(n)

time, where m(T) is the number of edges of T and n = |V(T)|
= |V(H)|. []

The space that Algorithm 1 needs is also O(n).

REFERENCES
[1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications,

Macmillan Press, London, 1976.

[2] J. A. Bondy, “Pancyclic graphs: Recent Results” , Infinite and
Finite Sets, Coll. Math. Soc. János Bolyai, vol. 10, pp. 181―187,
1975.

[3] J. A. Bondy and L. Lovász, “Lengths of cycles in Halin graphs”,
Journal of Graph Theory, vol. 8, pp. 397―410, 1985.

[4] G. Cornuejols, D. Naddef and W. Pulleyblank，“Halin graphs and
the traveling salesman problem”， Math. Programming, vol. 16, pp.
287―294, 1983.

[5] M. R. Garey and D. S. Johnson, Computers and Intractability―A
Guide to the Theory of NP-Completeness, W. H. Freeman and
Company, 1979.

[6] R. Halin, “ Studies on minimally n-connected graphs ” ,
Combinatorial Mathematics and its Applications, Academic Press,
London, pp. 129―136, 1971

[7] Y. Li, D. Lou and Y. Lu, “Algorithms for the optimal Hamiltonian
path in Halin graphs”， Ars Combinatoria, vol. 87, pp. 235―255,
2008.

[8] Dingjun Lou, “Hamiltonian paths in Halin graphs”, Mathematica
Applicata (Chinese) , vol. 8, pp. 158―160, 1995.

[9] Dingjun Lou and Huiquan Zhu, “A note on max-leaves spanning
tree problem in Halin graphs ” , Australasian Journal of
Combinatorics, vol. 29, pp. 95―97, 2004.

[10] Dingjun Lou and Hongke Dou，“A linear time algorithm for
optimal bottleneck traveling salesman problem on a Halin graph”，
Proc. 2011 International Conference on Computer, Communication
and Information Technology (ICCCIT 2011), 2011, pp. 60―62.

[11] J. M. Phillips, P. Punnen and S. N. Kabadi，“A linear time
algorithm for the bottleneck traveling salesman problem on a Halin
graph,”， Information Processing Letter, vol. 67, pp. 105―110,
1998.

.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0388

