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Abstract—The multiresponse polynomial regression models are 
deal with by a linear combination to the responses for getting a 
manageable single-response model. Based on this method, 
prove that the symmetric design is optimal in the case of 
multiresponse polynomial regression models in symmetric 
domains. 
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I.  INTRODUCTION 

The polynomial regression model is widely used. It has 
been proved that the symmetric design is optimal in the case 
of singleresponse polynomial regression models in 
symmetric domains. But the construction of optimal designs 
for the multiresponse models is difficultly. However, the 
multiresponse polynomial regression models can be dealt 
with by a linear combination to the responses for getting a 
singleresponse model. Based on this method, it can be 
proved that the symmetric design is also optimal in the case 
of multiresponse polynomial regression models. 

II. MODEL TRANSFORMATION 

Consider the following linear models with r responses 

( ) ( ) , 1, 2, ,i i iEy x f x i rβ′= =             (1) 

where iy  is an observation on the ith responses, if  is a 

1ik ×  vector of the regression functions, iβ  is a 1ik ×  

vector of unknown constant parameters. A multivariate 
formulation of the models given in (1) is 

( ) ( ) ,Ey x f x β′=                            (2) 

where ( )1, , ry y y=   is the r -dimensional vector 

from the multivariate normal populations with the mean 

( )f x β′  and a variance-covariance matrix ( )ij r r
σ

×
Σ = , 

( )1 2, ,f f f ′′ ′=   is the k -dimensional vector and 

1

r
ii

k k
=

= , ( )1diag , , rβ β β=   is the block diagonal 

matrix of the parameters. 

Let ( )1, , rc c c ′=   be an arbitrary nonzero 1r ×  

vector. From (2) we obtain the single-response model 

( ) ( ) ( )
1

,
r

c c i i i
i

Ey x f x c f xβ β
=

′′= =            (3) 

where 
1

r
c i ii

y yc c y
=

= = , c cβ β=  

( )1 1 , , r rc cβ β
′′ ′=   is a 1k ×  vector of parameters. Note 

that cy , being a linear combination of normally distributed 

random variable, has the normal distribution with a variance 

2
cσ , and 

( ) ( )2

2

1

var var

2

c c

r
i ii ij ji iji i j

y yc c c

c c c

σ

σ σ
= ≠

′= = = Σ

= + 
. 

The combination coefficients vector c  can be 
determined according to criteria. For example, Khuri(1985) 

developed a multivariate test for lack of fit test and let  *c  be 

the eigenvector of 1
2 1G G−  associated with its largest 

eigenvalue. But in this paper, it does not change the result 
that c  is an arbitrary nonzero 1r ×  vector. 

III. SYMMETRIC POLYNOMIAL DESIGNS 

Consider the multiresponse polynomial regression 
models  

( ) ( )
2

0 1 2

1, 2, ,

i i i

k
i i i ik

Ey x f x

x x x
i r

β

β β β β

′=

= + + + +
=




      (4) 

where ( ) ( )21, , , , k
if x x x x ′=   is a ( )1 1k + ×  vector of 

the regression functions, ( )0 1, , ,i i i ikβ β β β ′=   is a 

( )1 1k + ×  vector of unknown constant parameters. 

Let ( )1, , rc c c ′=   be an arbitrary nonzero 1r ×  

vector. From (4) we obtain the single-response polynomial 
regression model 

( ) ( )

( )
1 0 1

,

c

r k r
j

i i i i ij
i j i

Ey x f x

c f x c x

β

β β
= = =

′=

′= = 
        (5) 
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where ( ) ( )21, , , , kf x x x x ′=   is a ( )1 1k + ×  vector 

of the regression functions, 

0 1
1 1 1

, , ,
r r r

i i i i i ik
i i i

c c cβ β β β
= = =

′=   （ ）  is a ( )1 1k + ×  

vector of unknown constant parameters. 
For the model (5), the experimental conditions 

1 2, , , nx x x  are assumed to lie in [ ]1,1− and the 

experiment design is 
1 2

1 2

n

n

x x x
p p p

ξ  
=  
 




 , 

where i
i

Np
N

= , 
1

1
n

i
i

p
=

= . 
1

n

i
i

N N
=

= is the total 

number of observations, and the information matrix 

( ) ( ) ( )
[ ]

( ) ( )
1,1

1

.
n

i i i
i

M f x f x d p f x f xξ ξ
−

=

′ ′= =  

An information matrix 1M  is at least as good as 

another information matrix 2M , relative to the criterion φ , 

when ( ) ( )1 2M Mφ φ≥ . It is essential that a reasonable 

criterion conforms:  

( ) ( )1 2 1 20M M M Mφ φ≥ ≥  ≥ ,  

( ) ( ) ( )1 2 1 2M M M Mφ φ φ+ ≥ + , for all nonnegative 

definite 1M and 2M . 

        The most prominent optimality criteria are the matrix 

means tφ , for ( ], 2t ∈ −∞ , which enjoy many desired 

properties. The classical A − , D −  and E − optimality 

criteria are special cases of tφ . Let 1 2, , , pλ λ λ denote the 

eigenvalues of a positive definite information matrix M . 

Then the matrix means tφ  is defined by 

1

1

1 p t
t

t i
ip

φ λ
=

 
=  
 
 . 

Because of the formula  ( ) ( ) 1V Mβ ξ ξ −  =  , the matrix 

mean criteria can be expressed in terms of dispersion 

matrices as well. Criterion 1φ−  is the A −  optimality criteria. 

Maximizing ( )1 Mφ−  is equivalent to minimizing the trace 

of the corresponding dispersion matrix. The determinant 

criterion ( D −  optimality criteria) ( )0 Mφ  is equal to M , 

and hence it induces the same preordering among 

information matrices as M . The extreme member of tφ  

for t → −∞  yields the smallest-eigenvalue criterion ( E −  

optimality criteria) ( ) ( )minM Mφ λ−∞ = .  

According to the well known de la Garza phenomenon, 

let 
1 2

1 2

n
n

n

x x x
p p p

ξ  
=  
 




 with 1n k> +  be an n -

point design for the LSE of β  in the polynomial model (5) 

of degree k . Then there exists a ( 1)k + -point 

design
* * *

* 1 2 1
1 * * *

1 2 1

k
k

k

x x x
p p p

ξ +
+

+

 
=  
 




 for the LSE of β  in 

model (5) such that ( ) ( )*
1k nM Mξ ξ+ = . 

First we consider the reflection operation. Let ξ  be a 

design for the LSE of β  on [ ]1,1χ = −  in the polynomial 

model (5). The reflected design Rξ  is given by 

1 2

1 2

nR

n

x x x
p p p

ξ
− − − 

=  
 




, then  

( ) ( )RM QM Qξ ξ= ,                    (6) 

where ( )1, 1,1, 1, , 1Q Diag= − − ± . 

The symmetrised design 

( )
1 1 2 2

1 1 2 2

1

2

2 2 2 2 2 2

R

n n

n n

x x x x x x
p pp p p p

ξ ξ ξ= +

− − − 
 ≡
  
 





, 

Assigns the weight 
2

ip
 to ix  and ix−  for each i . The 

information matrix of ξ  is 

( ) ( ) ( )( )1

2
M M QM Qξ ξ ξ= + , 

where all odd moments are zero and the even moments are 
equal to the corresponding moments of the original design 
ξ . Hence the averaging operation simplifies information 

matrices by letting all odd moments vanish. Since ( )RM ξ  

is obtained from ( )M ξ  by the similarity transformation 

(6), ( )RM ξ and ( )M ξ  have the same eigenvalues. 

From the above, it follows that any optimality criterion 
which is a function of the eigenvalues of the information 
matrices will be invariant with respect to the reflection 
operation and superadditive of φ  (with respect to the 

reflection) imply 

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France. 
© the authors 

0466



( ) ( ) ( )

( ) ( ){ }
( )

1

2

1

2

.

R

R

M M M

M M

M

φ ξ φ ξ ξ

φ ξ φ ξ

φ ξ

    = +     

 ≥ +    

=   

 

Thus symmetrization improves the value of the criterion φ , 

or at least maintains the same value, provided that φ  is 

superadditive and invariant with respect to the reflection. 
Therefore, for such criteria, we may confine ourselves to the 
class of symmetric designs. 

IV. SYMMETRIC DESIGNS FOR QUADRATIC 

REGRESSION  

Let 3ξ   be a symmetric 3 -point design on [ ]1,1χ = −  

for the LSE of 0 1 2
1 1 1

, ,
r r r

i i i i i i
i i i

c c cβ β β β
= = =

′=   （ ） in the 

quadratic model 

 2
0 1 2

1 1 1

.
r r r

c i i i i i i
i i i

EY c c x c xβ β β
= = =

= + +         (7) 

According to the E.P. Liski(2002) result, there exists a 

symmetric 3 -point design *
3

1 0 1

1
2 2

p pp
ξ

− 
 =
 −
 

 with 

1p <  such that ( ) ( )*
3 3M Mξ ξ≥ . 

The characteristic function of ( )*
3M ξ is  

( ) ( ) ( )( )1 ,F p p pλ λ λ λ= − − − −    

which yields the eigenvalues of ( )*
3M ξ : 

( )

( )

2
1

2

2
3

1 1
1 5 2 1,

2 2
,

1 1
1 5 2 1.

2 2

p p p

p

p p p

λ

λ

λ

= + + − +

=

= + − − +

 

The optimal designs are as follows: 

A − optimal design: 

1 0 1
,1 1 1

4 2 4

− 
 
 
 

 

D − optimal design: 

1 0 1
,1 1 1

3 3 3

− 
 
  
 

 

E − optimal design: 

1 0 1
.1 3 1

5 5 5

− 
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