
Parallel Programming Based on Microsoft.NET TPL

Zuomin Luo, Quanfa Zheng1, Xinhong Hei2
School of Computer Science and Engineering

Xi’an University of Technology
Xi’an, China

zqf0687@hotmail.com1
heixinhong@xaut.edu.cn2

Nasser Giacaman
Department of Electrical and Computer Engineering

The University of Auckland
Auckland, New Zealand

n.giacaman@auckland.ac.nz

Abstract—In order to reduce the complexity of traditional
multithreaded parallel programming, this paper explores
modern task-based parallel programming using the
Microsoft.NET Task Parallel Library (TPL). Firstly, this
paper utilizes the two main parallel programming models:
Data Parallelism and Task Parallelism, which are supported
by TPL. Then we employ two experiments to apply both
models. Finally, the paper shows and analyses the
performance of our applications. Through experiments we
show that TPL's new task-based parallel programming
approach can dramatically alleviate programmer burden and
boost the performance of programs.

Keywords-Parallel programming; TPL; Performance; Data
parallelism; Task Parallelism

I. INTRODUCTION

Nowadays, multi-core microprocessors are ubiquitous.
With multi-core processors, clock speeds are not
increasing with newer hardware as much as in the past.
However, common sequential programs barely benefit
from multi-core hardware advances; programmers need to
adapt their programming model to take advantage of
multi-core processing units in order to get performance
improvements. Traditionally, programmers focused on a
multithreaded programming model to boost executing
speed and resource utilization. There are some popular
threaded shared memory programming models (such as
Pthreads and OpenMP) and message passing programming
models (such as Message Passing Interface (MPI)). These
models actually provide powerful tools for parallel
programming and have even become the de facto standard
for their respective domain. But the classical shared
memory model, the programming unit for parallelism is the
thread, and it requires the programmer to create them,
assign work to them, manage their existence, while also
requiring knowledge of the underlying physical shared
memory architecture (e.g. number of available processing
cores) to achieve performance improvements.

Fortunately, the Microsoft .NET Framework 4.0
introduces a modern task-based programming model to
express parallelism. Specifically, this includes the Task
Parallel Library (TPL), Parallel LINQ and many
supporting classes that make writing parallel program with
C# simpler and easier than ever before. In this paper we
mainly base on TPL to explore the parallel performance of
a C# program and application. The basic unit of the TPL is
the task, which lets the programmer focus primarily on the
business logic of the problem being solved instead of on
the mechanics of how it will get done.

This paper uses both data parallelism and task
parallelism programming models supported by TPL with
C#. Through two concrete experiments of matrix
multiplication and image blender, the detailed process of
design parallel procedure will be explained. Finally, the
performance of the two parallel experiments implemented
by TPL will be evaluated.

II. DATA PARALLELISM MODEL

Data parallelism refers to scenarios in which the same
operation is performed concurrently on elements in a
source collection or array. The .NET framework provides
new constructs to achieve data parallelism by using
Parallel.For and Parallel.Foreach constructs, instead of
sequential For and Foreach loops. For and Foreach loops
are cornerstones of .NET development, but both keywords
create sequential loops where an iteration is not started
until the previous iteration has completed. On the contrary,
TPL contains support for parallel loops in which the
iterations are performed with some degree of concurrency.
Parallel loops create and manage tasks (i.e. the units of
concurrency) on behalf of the user. They also provide some
very useful convenience methods to coordinate those tasks.
Many existing applications can be decomposed so that they
can be executed in parallel. Take for example the following
method for multiplying two matrices:

In this example, the outer iterations are independent of

each other and can potentially be done in parallel. A
straightforward and traditional way to parallelize this
algorithm would be to use size threads, where each thread
would execute the two inner loops with its corresponding
iteration index. But that would be expensive in terms of
memory (since each thread needs a stack) and in terms of
time (other additional overhead, such as operating system
management of a large number of threads).

It is better to use a small pool of threads, and assign to
them a set of lightweight tasks to execute, where a task is a
finite CPU bound computation, like the body of a for loop.
So instead of threads we should create tasks, each of them
executing the two inner loops for its iteration index.
Moreover, the tasks would be executed by n threads, where

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0505

n is typically the number of processors. Using tasks instead
of threads has many benefits, not only are they more
efficient, they also abstract away from the underlying
hardware and the OS specific thread scheduler. Now we
revisit above example that realized by TPL method:

In section 4 we will compare the performance of

sequential and parallel matrix computation.

III. TASK PARALLELISM MODEL

The Task Parallel Library (TPL) introduces the concept
of task. Task parallelism is the process of running these
tasks in parallel. A task is an independent unit of work,
which runs with a program. The TPL utilizes the threads
under the hood to execute these tasks in parallel. The
design and number of threads to use is dynamically
calculated by the runtime environment. When independent
computations are started in different tasks, we use a model
of task parallelism.

Figure 1. Screenshot of image blender application

The TPL provides Parallel.Invoke and Task.Factory to
launch several methods in parallel. Parallel.Invoke is the
simplest expression of the parallel task pattern. This
method returns when all the tasks are finished. Similarly,
the StartNew method of the Task.Factory class creates and
schedules a new task that executes the delegate method that
is provided as its arguments. In addition, we can wait for
parallel tasks to complete by calling the Task.WaitALL
method [3]. In the light of verifying task parallelism
efficiency, we create an image blender application which
processing two images in parallel. One image is to be gray
processed and the other is to be rotated 180 degree (as Fig.
1 shows), so two images processing operations are

performed on each of them and must be complete before
the images can be blended.

As Fig. 1 shows, the left image is to be gray processed,
while the right one is rotated 180 degrees. Then after both
processing completed, the two images would be blended.
The implementation of image blender by sequential and
parallel tasks is given as following:

And the next section will show the performance of the

image blender application running on above three ways
respectively.

IV. PERFORMANCE EVALUATION

We now check the performance of the two TPL parallel
applications: matrix multiplication and image blender.

We firstly test the data parallelism performance of
matrix multiplication. Test coefficient matrix is 1024 ×
1024 and test results are as follows: Fig. 2 indicates
corresponding relationship between execution time and
number of processors running on sequential and parallel
version of matrix multiplication. Fig. 3 shows the speedup
of parallel matrix multiplication. As we can see from Fig. 2
and Fig. 3, matrix multiplication achieves expected linear
speedup with increasing multi-core processing hardware
resources. All experimental tests were run on a 2-socket
quad-core Intel Xeon E5504 machine with 8GB RAM
memory running Windows Server HPC Edition (64 bit).

In order to verify the latter application, we run it on
multi-core system as well and record the execution time on
different running mode. The results are given as Tab. 1.

Figure 2. Execution time and number of processors

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0506

Figure 3. Speedup of parallel matrix multiplication

TABLE I. Execution time of image blender application running on
multiple cores

Processor
cores

Execution time (seconds)

Sequential Task Factory Parallel
Invoke

2 9.122 6.226 6.240

4 9.156 6.512 6.637

8 9.213 6.856 6.831

From Tab. I, we detected that parallel running speedup
over the sequential version would be nearly the same
regardless of running on how many cores microprocessor.
And two base task parallelism patterns (i.e. Task.Factory
and Parallel.Invoke), get the similar performance advances.
Some may doubt the parallel improved scalability using
TPL, however, ignore what the task we have distributed
and what part of task would be parallelized, which are
issues need to be paid attention during our parallel
programming.

 Fig. 4 explains the above speedup we obtained by
parallel execution flow. As we can see, SetToGray and
Rotate methods need 5.932 seconds to run in parallel
instead of 8.918 seconds in sequence. In this case, two
tasks only take up two cores to execute, furthermore,
burden on imbalanced workload. That is why we get the
above speedup of this application. Above all, it is
programmer responsibility to identify potential parallelism
and achieve fully parallelized and perfectly scalable code.

Figure 4. Parallel execution flow of image blender

V. CONCLUSION

Parallel programming is very challenging but excellent
new task-based programming models offered by
Microsoft.NET Framework and Visual Studio 2010 make
it easier for us. In this paper we start with TPL, introduce
its common parallel programming models and verify their
efficiency through our two practical experiments.
Although the performance improvement is specific to our
test environment and applications, it shows clearly that
parallel programming using TPL will raise the
performance of application significantly and give the
chance to programmer to exploit available multi-core
resources.

ACKNOWLEDGMENT

The authors wish to acknowledge the support of the
National Natural Science Foundation of China (No.
61100173) and fund of Shaanxi Province Education
Department (No. 11JK1038), as well as Scientific
Research Starting Foundation for Doctors of Xi’an
University of Technology (No.116211105).

REFERENCES
[1] A. Freeman, Pro .NET 4 Parallel Programming in C#, Apress, 2010.

[2] G. C. Hillar, Professional Parallel Programming with C#: Master
Parallel Extensions with .NET 4, Wrox, 2010.

[3] C. Campbell, R. Johnson, A. Miller and S. Toub, Parallel
Programming with Microsoft .NET: Design Patterns for
Decomposition and Coordination on Multicore Architectures,
Microsoft Press, 2010.

[4] D. Leijen, W. Schulte and S. Burckhardt, “The Design of A Task
Parallel Library,” Proceeding of the 24th ACM SIGPLAN
conference on object oriented programming systems languages and
applications (OOPSLA), pp. 227–242, 2009.

[5] H. Vandierendonck and T. Mens, “Techniques and Tools for
Parallelizing Software,” IEEE Software, Vol. 29, No. 2, pp. 22–25,
2012.

[6] T. G. Mattson, B. A. Sanders and B. L. Massingill, Patterns for
Parallel Programming, Addison-Wesley Professional, 2004.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0507

