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Abstract—Strapdown three-axis magnetometer needs 
calibration before it can be properly employed for navigation 
purposes. Many scalar calibration methods have been 
proposed to determine the calibration parameters. However, 
most calibration approaches seldom describe the influence of 
sampling distributions on the parameters estimation. As a 
result, some approaches lack robustness when measurement 
points are not well distributed. This paper presents the usage 
of D-optimal design to improve the accuracy and robustness of 
the solutions for magnetometer calibration problem. The basic 
idea is to choose the measurement point positions to build a D-
optimal design, and then seek optimal solutions of the cost 
function of the D-optimal design problem by using the particle 
swarm optimization (PSO) algorithm. Numerical results which 
show the large improvement in the accuracy and robustness of 
the solutions are achieved. 

Keywords-Three-axis magnetometer; Scalar calibration; D-
optimal design; Parameter estimation 

I.  INTRODUCTION (HEADING 1) 

Strapdown three-axis magnetometer is a low cost sensor 
for navigation purposes. It is widely integrated by other 
sensors to determine the attitude or position of a vehicle [1]. 
The magnetometer outputs are often distorted by combined 
errors which result from sensor manufacturing and vehicle 
disturbance, and thus a calibration must be performed prior 
to its use.  

A kind of calibration methods called scalar calibration is 
often used. Scalar methods convert the calibration problem 
into an error model parameter estimation problem, and 
estimate the parameter using data sets obtained from 
vehicle’s maneuver. Since the quality of data sets may 
dramatically influence the accuracy and robust of parameter 
estimation [2], a major question we face is how to best 
collect measurements to enable the calibration method to 
efficiently and accurately estimate model parameters. This is 
the well-known optimal design problem [3]. An optimal 
design of maneuver should be carefully considered before 
the procedure of magnetometer calibration. 

An optimal attitude motion of sensor or vehicle can 
provide meaningful magnetic measurements to improve a 
robust calibration. Unfortunately, methods on attitude motion 
optimization for magnetometer calibration are few. Merayo 
[2] considered the distribution of measurements as one of the 
two main sources to affect the parameters, and suggested that 
measurements should be distributed uniformly in all 
directions in vehicle’s allowable attitude space. Merayo’s 
strategy (the uniformity design method) is easy to be 

implemented but only suited to the case that the attitude 
space is regular in shape. Gebre-Egziabher [4] pointed out 
that a data collection scheme must be performed to reduce 
the effect of measurement locus, but did not describe the 
scheme in detail. Bonnet [5] took three data sets obtained 
from different movements (free rotations, rotations around 
East-West axis, and six static orientations) for simulated 
calibration comparison. Based on the simulation results, he 
concluded that some calibration methods are lack of 
robustness when measurement points are not well distributed. 
In a word, there are seldom criteria or principles to design a 
good scheme of attitude motion to obtain high quality of 
measurements for magnetometer calibration. 

This paper presents a novel algorithm using D-optimal 
design which gives an optimal scheme of attitude motion for 
robust magnetometer calibration. The D-optimal design is a 
popular method for solving the optimal design problem since 
it has several advantages. For example, it can be applied to 
select a design when the experimental region is not regular in 
shape [6]. This property is useful for the strapdown three-
axis magnetometer calibration problem. 

The D-optimal design method is assessed in numerical 
results. The results show that data sets obtained from the 
proposed attitude motion by the D-optimal design greatly 
improves the accuracy of parameter estimates as compared 
with the Merayo’s strategy, namely, uniform design. 

Section II describes the formulation of the magnetometer 
calibration problem, as well as some existing calibration 
methods. Section III presents the D-optimal design and its 
application to the calibration problem. Section IV describes 
the seeking of optimal solutions of the D-optimal design. 
Numerical test is presented in Section V. Finally, the 
conclusion is given in Section VI. 

II. MAGNETOMETER CALIBRATION 

A. Backgrounds 

The coordinate frames used in this paper are defined as 
follows. 

n-frame: Orthogonal reference frame aligned with north-
up-east (NUE) geodetic axes. 

b-frame: Orthogonal reference frame fixed and aligned 
with nose-up-right of the vehicle. 

s-frame: Sensor frame fixed on the magnetometer, built 
up from sensor’s three axes. 

Note that the s-frame is different from the b-frame. It is 
non-orthogonal with scale factor errors and offsets because 
the frame is affected by both sensor errors and external 
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magnetic field. If we ignore all errors, the s-frame will be 
identical to the b-frame. 

We assume that the geomagnetic field in calibration area 
is homogeneous, and the reference geomagnetic vector in n-

frame, denoted by ( ), ,
Tn n n nx y z=B , can be modeled with 

reasonable accuracy from the Word Magnetic Model (WMM) 
[7]. Its projections in b-frame are 

( ),
b b n

t nC t=mB B  (1) 

where 1,2,...,t m= denotes the index of the directions, ,
b

tmB  

is the projections in b-frame and ( )b
nC t  denotes the direction 

cosine matrix in t step that transforms the magnetic field 
vector nB  in n-frame to the vector ,

b
tmB  in b-frame. The 

transformation is described by a “yaw-pitch-roll” rotation, 
that is 

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

( ) ( )
( )( )

1 0 0

0 cos r sin r

0 sin r cos r

cos p sin p 0 cos y 0 sin y

sin p cos p 0 0 1 0

0 0 1 sin y 0 cos y

b
n t t

t t

t t t t

t t

t t

C t

T Euler t

 
 = × 
 − 

−   
   −   
      

≡

     

 (2) 
where ( ) ( )r , y , pt t tEuler t =  denotes the Euler angles in t  

step. In actual practice, except some vehicles with low size, 
most vehicles cannot maneuver in the entire Euler angle 
space. So the Euler angles space is usually constrained as 
follows. 

r r

y y

p p

min r max ,

min y max ,

min p max

Euler

 < <
 

Ω = < < 
 < < 

 (3) 

where EulerΩ  denotes Euler angles space that the vehicle can 

span, minϑ  and maxϑ  ( )r,y,pϑ =  denote the maximum and 

minimum of ϑ , respectively. Thus we have 

( ) 1, 2,...,EulerEuler t t m∈ Ω ∀ =  (4) 

B. Magnetometer Errro Model 

In general, magnetometer measurement errors result from 
sensor manufacturing (non-orthogonality, scale factors, and 
offsets) and vehicle disturbance (hard iron and soft iron 
errors). Mathematically, these errors are modeled as total 
non-orthogonality, total scale factor and total bias, which are 
the main results calibrated by most calibration methods [5, 8]. 
A unified mathematical model is used as follows: 

s b b
m S N m mB = C C B + O + n = KB + O + n  (5) 

where s
mB  is the magnetometer measurement in sensor 

frame (s-frame). The superscript s  indicates s-frame. b
mB  is 

the reading in b-frame. NC  denotes the total non-

orthogonality matrix. SC  is total scale factor matrix. O  is 

total bias vector. S NK = C C  is an upper triangular matrix 
under the assumption that the z-axis of s-frame coincides 
with the z-axis of b-frame [5]. n  is measurement noise 
vector, which is generally assumed to be white and Gaussian 

and is denoted as ( )2
3~ 0,N Iσn . 

A calibration model is constructed by inversing (5), that 
is 

( ) ( )1ˆ b s s−= − − = − −m m mB K B O n P B O n  (6) 

where ˆ b
mB  denotes the calibrated measurement in b-frame. 

The parameterized matrix 1−P = K  is also an upper triangle 
matrix. 

The scalar calibration methods follow the fact that the 
plot of a strapdown three-axis magnetometer output with 
error free lies on a sphere with radius equal to the magnitude 
of local geomagnetic field. Thus the scalar equation is 

2
2 ˆ 2b s T s T s TR n= = − + +m m m mB B GB O GB O GO   (7) 

where R  is the total magnitude of reference magnetic field. 
The superscript T  denotes matrix transpose operation. 

T=G P P is a positive symmetrical matrix, and the scalar 

noise item is ( )2
Ts Tn = − − +mB O Gn n Gn . In general, we 

assume the original measurement noise n  is small enough 
that n  is approximately white Gaussian distributed. 

Expanding the scalar equation (7) gives 

( ) ( )
( )

2 2

1 2 3 4 5

2

6 7 8 9 10 0

s s s s s s s s
x x y x y y y z

s s s s
z x y z

a B a B B a B B a B a B B

a B a B a B a B a n

+ + + +

+ + + + + + =
 (8) 

where s
xB , s

yB  and s
zB  are components of s

mB . 

, 1,2,...,10ia i =  are defined by the calibration parameters P  
and O . 

By introducing an intermediate variable, the nonlinear 
scalar equations (8) can be transformed into a linear equation 
as follows 

h nχ θ= +   (9) 

with 
1χ =  

( ) ( ) ( )( )2 2 2
, , , , , , , ,s s s s s s s s s s s s

x x y x z y y z z x y zh B B B B B B B B B B B B=  

( )1 2 3 4 5 6 7 8 9
10

1
, , , , , , , ,

T
a a a a a a a a a

a
θ = −  

Consider m  measurements, the linear equation of each 
data point can be combined into a large matrix equation as 

θ= +W H n  (10) 

where ( )1,1,...,1
T

W = , ( )1 2, ,...,
T

mh h h=H , ih  is constructed 

by the -thi sample of s
mB .  

Once θ  is estimated, the calibration parameters P  and 
O  can be abstracted from θ . 
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III. D-OPTIMAL DESIGN 

A. Theoretical Results 

The D-optimal design is a typical optimal experimental 
design method, which is designed to select optimal sampling 
distributions by minimizing a specific cost function for 
parameter estimation problems [9]. There are several 
optimality criteria proposed to get an optimal design, for 
example, A-optimal design, D-optimal design, E-optimal 
design and SE-optimal design [3]. Among them, the D-
optimal is the most popular one. 

We describe the D-optimal design from a linear 
regression model like (9). In this model, θ  is the variable to 

be estimated, denoted by θ̂ . The value of θ̂  can be 
estimated by a standard least square estimator as follows 

( ) 1ˆ T TH H H Wθ
−

=  (11) 

The matrix 
T

FM H H=  (12) 
is called the information matrix. 
The variance-covariance matrix of θ̂  is 

( ) ( ) 12ˆ TV H Hθ σ
−

=  (13) 

where 2σ  denotes the variance of the measurement errors. 

It is shown that the variance of θ̂  is influenced by the value 
of the information matrix. 

The D-optimal design is obtained by maximizing the 
determinant of the information matrix FM . That is 

( ) ( )max detD F FJ M M=  (14) 

( )D FJ M  is the cost function of the D-optimal design. It 

is a continuous operation on matrices so that DJ  is 

continuous in FM . The higher is the determinant of the FM , 

the closer to orthogonality is the FM [6]. This is useful to the 
model parameters estimation because the orthogonality 
ensures the mutual independence of the model coefficients. 
Furthermore, the ill-posed problem of the system can be 
alleviated, thus a robust estimates may be achieved. 

B. Computations 

The popular algorithms for the D-optimal design are the 
Fddorov’s or Fedorov-like algorithms [9], which are also 
called exchange algorithms. The basic concept of these 
algorithms is to iteratively replace an old candidate with 
minimal information of the design by a new candidate with 
maximal information of the design. When the number of 
candidates is high, these algorithms are inefficient. In our 
case, there are infinite candidates due to the continuous Euler 
angles space, so the above methods become impractical. A 
projected conjugate gradient algorithm was proposed in [10] 
to solve the D-optimal design. This method is useful in low 
dimensional problem but not feasible for our case, because 
the dimension of solutions composed by m  data points is as 
high as 3m . A third kind of methods are based on stochastic 

search algorithms. These methods are applicable to solve 
complex, continuous and high-dimensional problems [11].  

The PSO algorithm is a stochastic search algorithm 
proposed by J.Kennedy and R.Eberhart [12]. This algorithm 
searches for an optimal point in the solution space of the 
optimization problem directly, and thus it is more 
straightforward to use in relation to the GA algorithm. 
Furthermore, the PSO algorithm updates its particles 
(solutions) both by position information and velocity 
information. Therefore, it generally has a faster convergent 
rate than other evolution algorithms. In this work, we use the 
PSO algorithm to solve the D-optimal design cost function. 

In order to seek a practical solution of the D-optimal 
design minimum problem by the PSO algorithm, the cost 
function of the problem should be transformed into a 
minimization form: 

( ) ( )
1

arg min log
det F

g X
M

 
 =
 
 

 (15) 

A particle is defined as: 

( ) ( ) ( )
[ ]
[ ]

1 1 1 2 2 2

1 2 3

1 2 ...

r , y , p , r , y , p ... , r , y , p

, ,...,

T

T

m m m

T

m

X Euler Euler Euler m

x x x

=   

=

≡

 (16) 

Note that the dimension of X  is 3m .  
At the k  step, the position vector of the -thi  particle can 

be presented as 

[ ]1 2 3( ) ( ), ( ),..., ( )
T

i i i i mX k x k x k x k− − −=  

The velocity vector as 

[ ]1 2 3( ) ( ), ( ),..., ( )
T

i i i i mV k v k v k v k− − −=  

The Pbest vector of this particle found so far as 

[ ]1 2 3( ) ( ), ( ),..., ( )
T

i i i i mP k p k p k p k− − −=  

The Gbest vector of the swarm found so far as 

[ ]1 2 3( ) ( ), ( ),..., ( )
T

i i i i mG k g k g k g k− − −=  

All particles adjust their velocities and positions as 
follows. 

1 1

2 2

( 1) ( ) ( ( ) ( ))

( ( ) ( ))

i j i j i j i j

i j i j

v k wv k c r p k x k

c r g k x k

− − − −

− −

+ = + −

+ −
 (17) 

( 1) ( ) ( 1)i j i j i jx k x k v k− − −+ = + +  (18) 

where i ( 1, 2,3,..., )i m= is the -thi particle of the swarm, 

j ( 1, 2,...,3 )j m=  is the -thj  dimension of particle. w is an 
inertia weight controlling the influence of previous velocity 
of a particle. 1c  and 2c  are study factors, respectively. 1r  and 

2r  are random scalars in the range (0,1)  and keep the 
diversities in the swarm. In addition, the particle velocity in 
each dimension is limited to an interval max max[ , ]V V− . The 
interval controls a maximum step size the particle can move, 
which prevents the positions of the particles from increasing 
rapidly in each step [13]. 

The inertia weight w  has provided improved 
performance in many applications. A suitable selection of w  
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provides a balance between global and local exploration and 
exploitation [13]. The most common strategy of selecting w  
is decreased linearly as 

max min
max

max

w w
w w iter

iter

−
= − ×  (19) 

where maxw and minw  denote higher and lower values of 

w , respectively. maxiter  denotes the maximum number of 
iteration and iter  is the current iteration. 

Procedure of the PSO-based algorithm for the problem in 
is summarized as follows 

Initialize all particles of the PSO with random velocities 
and positions. Set the current positions as initial Pbest for all 
particles. Set the current iteration 0k = . Calculate the value 
of cost function (15) for each particle, and then select the 
best position as initial Gbest. 

Update the velocity and position for each particle 
according to (17) and (18). Limit each dimension of velocity 
within max max[ , ]V V− and the position within the search space. 

Calculate the new fitness value of all the particles. For 
each particle, if the new fitness value is smaller than the 
fitness value of its Pbest, then replace Pbest by current 
position, otherwise, hold the Pbest. 

Compare the fitness value of each particle and select the 
minimum. If this minimum is smaller than the fitness value 
of Gbest, replace Gbest by the particle’s position which 
holds the minimum fitness value. 

Increase the iteration 1k k= + . If the fitness value of the 
Gbest is less than a set threshold or maxk iter= , terminate the 
iteration and output the Gbest; otherwise, go to 3). 

Given ∗X  is the global optimum by the algorithm, the 
solutions of the optimization in (15) can be easily abstracted 
from ∗X . That is 

( ) ( )3 2,3 1,3 1, 2,...,
T

Euler t X t t t t m∗ ∗= − − ∀ =  (20) 

IV. SIMULATIONS 

A. Experimental Setup Description 

Assume that the calibration position is in Changsha city, 
Hunan province, China. Its reference geomagnetic vector can 
be modeled from the Word Magnetic Model. The reference 
parameters of total non-orthogonality angles ψ , total scale 
factor S , and total biasΟ  are  

1.5 1.3 3000

0.8 deg, 0.7 , 6000 nT

1.4 1.2 5000

     
     = = = −     
          

ψ S Ο  

We assume that the three-axis magnetometer is strapped 
to an Autonomous Underwater Vehicle (AUV). The 
constrained maneuverability of the AUV is 

5 r 5

180 y 180

20 p 20
Euler

 − < <
 

Ω = − < < 
 − < < 

 

 

 

 

The values of parameters in the PSO are reported in Tab. 
1. Our setting uses the guidelines given in [14]. 

Note that the search space of the particle X  is composed 
by EulerΩ , and the dynamic range of each dimension in a 
particle should be limited to the corresponding interval. Also 
the maxV for each dimension is set to 15% of the 
corresponding new dynamic range. 

TABLE I.  PARAMETERS VALUES 

Parameters Values Parameters Values

maxw  0.9 
1c  1.8 

minw  0.4 
2c  1.8 

M  300 
maxiter  3000 

 

B. The estimation criteria 

To evaluate the accuracy of parameters estimation, three 
criteria are defined as: 

ˆ
100%ψη

−
= ×

ψ ψ

ψ
 (21) 

ˆ
100%Sη

−
= ×

S S

S
 (22) 

ˆ
100%ηΟ

−
= ×

Ο Ο

Ο
 (23) 

where ˆ ˆˆ , ,ψ S Ο  are estimates of , ,ψ S Ο , respectively. The 

superscript ∧  denotes an estimated quantity. ψη , Sη  and ηΟ  

denote the relative error of total non-orthogonality, total 
scale factor and total bias, respectively. Lower value they 
achieve, more accuracy the estimates are. 

C. Results 

We choose to take as many measurement points as 
unknown variable in order to minimize the number of 
measurements. In this case, there are 9 measurement points 
should be chose in an allowable Euler space. The attitude 
motion resulted from the Uniformity design method 
(Merayo’s method in [2]) and the D-optimal design method 
are listed in Tab. 2. 

The D-optimal design is distributed more dispersive than 
the Uniformity design. Thus a better estimation of the model 
parameters is likely to get [10]. On the other hand, the 
Uniformity design cannot keep the measurement point 
positions distributed evenly over the allowable region due to 
an affine transformation in equation (5) which transforms a 
regular region to a non-regular one, whereas the D-optimal 
design is insensitive to this transformation. 

We calibrate the measurement error model parameters by 
using the Two-Step calibration method proposed in [4]. This 
method is easy to be implemented. In addition, a condition 
number of the measurement error model can be computed 
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from the measurements. It is used to expose an effect of the 
D-optimal design on the parameter estimation. 

One thousand computer runs are carried out to produce 
measurements from the positions in Tab. 2. These 
measurements are added by random noise with a standard 
variance 30nTσ = . The average performance of the three 
criteria ψη , Sη ,ηΟ  for these random runs are shown in Fig. 

1- Fig. 3, respectively. These figures show that all criteria of 
the D-optimal design are superior to that of the Unifomity 
design in both the mean and the standard variance aspects. 
The mean of the relative errors ψη , Sη ,ηΟ  obtained by the 

D-optimal design are 9.8%, 0.5%, and 5.5%, compared with 
25.5%, 0.6%, and 7.5% by the Unifomity design. 
Correspondingly, the standard variance are 4.5%, 0.42%, and 
3.5%, compared with 16.5%, 0.45%, and 3.8%. As 
mentioned above, the D-optimal design considers the mutual 
independence of column coefficients, and hence improves 
the accuracy and robustness for the parameter estimates. 

The ratio computations of the determinant of the 
information matrix FM  and the condition number of the 
measurement error model are reported in Tab. 3. In this table, 
the ( )FM ∗  and ( )Cond ∗  denote the information matrix and 

the condition number of the two designs. designD  and designU  

denote the D-optimal design and the Unifomity design, 
respectively. The table shows that both the determinant of 
the 1

FM −  and the condition number following the D-optimal 
design are smaller than that of the Uniformity design. As a 
result, the calibration problem is more stable with the D-
optimal design. 

TABLE II.  ATTITUDE MOTION RESULTS FROM DIFFERENT OPTIMAL 

DESIGN METHOS [ ] (deg)roll yaw pitch  

Number Uniformity design D-Optimal design 

1 [ ]-5.0 -60.0 -20.0 [ ]5.0 -37.0 -20.0−

2 [ ]-5.0 60.0 -20.0 [ ]-5.0 -145.0 -20.0

3 [ ]-5.0 180.0 -20.0 [ ]5.0 -10.0 -6.0−  

4 [ ]0.0 -90.0 0.0  [ ]0.0 24.5 20.0  

5 [ ]0.0 0.0 0.0  [ ]3.2 -96.0 7.0−  

6 [ ]0.0 90.0 0.0  [ ]1.3 178.0 20.0− −

7 [ ]0.0 180.0 0.0  [ ]-1.4 180.0 -20.0  

8 [ ]5.0 -60.0 20.0  [ ]2.1 -35.0 20.0  

9 [ ]5.0  60.0 20.0  [ ]-5.0 -137.5 20.0  

 

TABLE III.  THE RATIO OF THE DETERMINANT AND CONDITION 
NUMBER 

Items Value

( ) ( )1 1

F design F designM D M U
− −

 
0.03

( ) ( )design designCond D Cond U  0.55

Mean Standard variance
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Figure 1.  Mean and standard variance of ψη  across 1000 runs 
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Figure 2.  Mean and standard variance of Sη  across 1000 runs 
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Figure 3.  Mean and standard variance of ηO  across 1000 runs 

 
Figure 4.  Final fitness values of the PSO for 100 random runs  

The PSO algorithm seeks an optimal solution of the D-
optimal design in a straightforward way. But this algorithm 
does not always to find the best solutions due to its possible 
premature convergence to a local optimum. Analysis of the 
PSO’s global convergence properties has been carried out in 
[15]. Fig. 4 depicts the final fitness values of the cost 
function of the PSO across 100 random runs. It shows that all 
final fitness values are very close. In other words, the PSO 
algorithm is stable in all 100 runs. The PSO method has an 
ability to seek an acceptable solution without resorting to a 
complete search of exhaustive potential solutions. 

V. CONCLUSIONS 

This paper has shown that the accuracy of solutions for a 
magnetometer calibration problem strongly depend on the 
measurements distribution. We proposed to select the 
optimal set of the measurement positions by the D-optimal 
design method. The solution to D-optimal design minimum 
problem is obtained by a standard PSO-based algorithm. 

Simulation results show that the proposed method 
significantly improves the accuracy of the parameters 
estimation. The method we proposed provides maneuver 
guidance for the magnetometer calibration. As long as 
measurements on the optimal orientations are included in the 
collected data set for calibration, improved estimates would 
be achieved. 
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