
A Client-side Intelligent Paging Algorithm Based on JavaScript

Yinhuang Le
Lab of Modern Educational Technology

University of Science and Technology of China
Hefei, China

yinhuang@mail.ustc.edu.cn

Jiahui Qi, Min Wu
Lab of Modern Educational Technology

University of Science and Technology of China
Hefei, China

Abstract—In this paper, a client-side intelligent paging (CIP)
algorithm based on JavaScript technique is proposed. CIP
algorithm can intelligently turn a large-scale HTML document
with an intricate DOM tree into more manageable pages with
relatively simple structure of DOM tree. There are two main
co-dependent procedures in CIP: self-corrective element node
splitting and self-adaptive text node splitting. Experiments
indicate that the loading time is reduced by 500% at most and
not a single page overflows. Thus, CIP can provide significant
improvement in large-scale HTML document paging.

Keywords-intelligent paging; manageable pages; self-correct;
self-adaptive; large-scale HTML document;

I. INTRODUCTION

With the increasing of massive open online courses and a
variety of convenient mobile terminals, a great demand of
access of online textbooks and e-books is observed in the
incoming digital reading era. Meanwhile, manufacturers such
as Apple, Google, and Amazon launch their new pad to
introduce more interactive, useful and delicate e-books with
fascinating page-flipping effects, rather than just scrolling a
whole book [1]. These e-books are HTML-based and they
are essentially split web pages. Thus it turns out that the
paging algorithm is the core part of making e-books, which
directly affects the user experience [2].

Paging algorithm makes up the defects of the popular
PDF-based e-books, such as tedious scrolling, static text-
only, and image without any interaction. Nowadays, most
client-side paging algorithms are based on part of HTML5
technique [3]: either CSS, JavaScript, or the combination of
two. In essence, they are all web-dependent technologies. In
this paper, JavaScript-based paging technique is adopted to
implement the paging algorithm.

A paging algorithm is used to make a HTML document,
which is large-scale with a considerable amount of DOM
nodes, into separate consecutive pages, which have relatively
small number of DOM nodes that with simple structure. Two
sub-processes, including breaking the original DOM tree and
reconstructing many new small compact trees, cost most of
the running time of paging algorithm. Thus, for a better user
experience, more and more experiments and advancements
of paging algorithms begin to emerge.

Recently, a variety of paging algorithms are widely
implemented in e-books for its high convenience. However,
there are many disadvantages of current common paging
algorithms, such as HTML truncation, loading speed, page
consistency, etc. All these factors would probably lead to a

really awkward and uncomfortable user experience. Thus, in
this paper, a more intellectual, effective, and faster algorithm
is proposed. The experiment and test are also provided.

II. CIP ALGORITHM

Although with the fast developments of the front-end
technology, there are still really few paging algorithms
depending only on the client-side browser. In this paper, the
client-side intelligent paging (CIP) algorithm is put forward.

CIP is regarded as an intelligent algorithm mainly
because that it is self-corrective when it overflows a page.
This should be ascribed to its design, including process
design and data structure design.

A. Process Design
The process of CIP is as follows. There is an original

HTML document named source, which has a large-scale
DOM tree, needing to be divided into fragments that are
consecutive but not always have the same size. Subsequently,
fragments are thrown into runtime-created containers named
temp in sequence. Giving a pre-defined page height as
threshold, if the height of a temp exceeded the threshold, the
temp is considered to be full. Therefore another temp would
be produced to contain fragments. Similar process runs one
after another until source goes empty. Finally, well
supported by the structure that temp provides and sufficiently
filled by the contents that get from the fragments of source,
corresponding pages come into being. To be more clearly,
figure 1 depicts a more direct view of the process.

Figure 1. The main process of CIP algorithm

As it is simply shown above, the whole process is exactly
like a situation that always happens on the production line,
say, coca cola. Coke incessantly comes out of source;
meanwhile, containers like bottles are constantly pushed to
fill coke until the source dries out. Thus, people can enjoy
coca cola. Indeed, CIP algorithm is far more complicated.
Having acquainted a macro view of CIP, it is turn to take a

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0639

deeper step internally to understand how it works in a micro
perspective. The specific steps are as follows.

• Step 1: Load the original HTML source file. Create a
pointer named src. Let src point to source file. And
Create a pointer named targ.

• Step 2: Create a new container and let targ point to
the new container.

• Step 3: Take out the first child of src, name it first.
• Step 4: Append first into current container. As a

result, the height of container would grow.
• Step 5: Determined by some comparison strategy of

height, which will be described after, if the current
container is not full, continue with execution of Step
2 and Step 4. Else if it does overflow, go to Step 6.

• Step 6: Check the node type of current first, if it is an
element node, go to Step 7. Else if it is a text node,
go to Step 8.

• Step 7: Take the current first from the current
container back to the current source. Depending on
the internal structure of first, if first can be split,
clone the most peripheral structure of first, name it
shadow, and append shadow to the current container.
Then shift the pointer src and targ respectively to
first and shadow, which means both pointers go a
step deeper in both source and container. After that,
continue with Step 3, 4, 5, 6. Else if first cannot be
split, continue with Step 2, 3, 4, 5, 6.

• Step 8: Create a one-dimensional array variable
named splitPoints to store the total split points that
first may have. Apply binary search to spiltPoints, if
an appropriate split point can be found, take the text
from the beginning of first to where the appropriate
split point stands, use them to replace the first. Then
let src point to the source file, and another loop will
go with Step 2, 3, 4, 5, 6. Else if none split point was
found, let src point to the source file and continue
with Step 2, 3, 4, 5, 6. When there is no more
content in the source file, this step ends, which in
turn brings the whole paging process to an end.

B. Data Structure Design
As mentioned above, along with the process of CIP, the

algorithm deals with a DOM tree, whatever scale it is, all the
time. Obviously, CIP is chiefly based on tree-form data
structure. All data is organized in a DOM tree. The source
file is a gigantic DOM tree while fragments broken from the
source have relatively small size DOM tree.

By using tree-form data structure, traversing all data
becomes enormously conveniently, especially for the shift of
two pointer: src and targ, which play a significant role in the
process of CIP. To demonstrate their importance, an example
of producing fine-grain DOM trees from a coarse-grain
DOM tree is provided as follows. For simplicity, the layers
of a DOM tree are confined to 3 and the number of nodes is
limited to 10. In addition, each node has different size and
complexity. Figure 2 to 5 depict a more detailed scene how
fragments are generated from a DOM tree by the method of
depth-first search (DFS) [4].

Initially, src points to the root of a DOM tree, and targ
points to a newly-created container, as depicted in Fig 2. The
dotted oval frame indicates the first sub-tree to be moved.

Figure 2. The first step of DOM tree splitting based on DFS

Fig. 3 shows the scene after filling the first child of src,
which is the sub-tree that the dotted oval frame in Fig. 2
enclosures, into targ. Suppose that the first child can be
perfectly filled in, therefore src and targ will just stay where
they were.

Figure 3. The second step of DOM tree splitting based on DFS

As CIP goes to next loop, Fig. 4 reveals what is going on
at this stage. Node 2 is now the current first child. The sub-
tree of Node 2 is too big to squeeze into the current container
as a whole. Thus, the tree-form structure of the sub-tree is
cloned and thrown into targ. Meanwhile, targ shifts to point
to the empty clone and src goes a layer deeper to point to
Node 2.

Figure 4. The third step of DOM tree splitting based on DFS

When the algorithm comes down to this step, assume that
it is checked that only Node 21 can be taken out, then the
state will be exactly what Fig. 5 presents below. A new
container has been created and targ points to it. At the same
time, src is set to point the root node again.

Up to this point, the most complicated splitting in
element node level has been handled. By flexibly shifting src
and targ, it is clearly that CIP can be clever enough to cope
with any splitting task in element node level. Thus, CIP is
considered to be self-corrective without taking a wrong

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0640

direction in a macro scenario when paging. Moreover, in a
micro scenario, there is a co-dependent mechanism along
with the self-corrective one. That is the self-adaptive splitting
in text node level, which will be described in the next section.

Overall, the design of CIP, in essence, is heavily involved
with manipulations of DOM tree and process of recursively
breaking DOM tree as well as reconstructing it.

Figure 5. The fourth step of DOM tree splitting based on DFS

III. IMPLEMENTATION MODEL

In the previous section, the whole process and data
manipulations of CIP algorithm have been amply elaborated.
Where there is an idea, there is a model. Hence, in this
section, the implementation model is proposed to achieve
client-side intelligent paging program.

There are two modules for the implementation model:
• The main module: fillPages().
• The auxiliary module: makePage().
As it is mentioned before, the relationship between the

two modules is quite simple. The following Fig. 6 draws a
clearer view about this.

Figure 6. Relationship between two modules

The auxiliary module is really straight forward. It is
invoked when fillPages() needs a new container. Then a
container with a nested two-layer <div> is created and return
to fillPages(). Pseudo codes of makePage() and fillPages(),
which can be terrifically useful for understanding the whole
idea how CIP acts intellectually, go as follows.

Figure 7. The pseudo codes of fillPages()

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0641

Figure 8. The pseudo codes of makePage()

Most of the pseudo codes described above have been
discussed a lot in process design and data structure design,
including the main process and self-corrective splitting of
element nodes, respectively. There is still one more vital part
hasn’t been covered yet. That is self-adaptive splitting of text
nodes. The following interprets how CIP adjusts itself to text
node splitting by converging to the same solution.

In most cases, text nodes are quite often buried as the
deepest nodes in a DOM tree, called leaf nodes. When the
splitting is applied to a text node, it probably implies that
CIP algorithm is almost about to create a new container,
since it knows there is no enough space in current container
for an element node. Whether an appropriate split point can
be found or not, a new container will be produced. It is not
hard to catch up with this idea. Suppose a split point is
observed. In this situation, the text would be cut into two
parts. After the former part filled into the current container, it
would be then full. Thus the latter part of the text would have
to wait for a new container to hold it. Otherwise no split
point suggests that the current container is already full, even
a single word. Apparently, in such circumstances, a new
container is absolutely necessary.

Dealing with identifying a split point, the binary search
method is introduced [5]. Exactly as the pseudo codes have
already clarified from line 27 to 37, the searching process
works as follows:

• Step 1: Reduce the length of array that contains all
split points by half.

• Step 2: Search in the first half. If page overflowed,
reduce the length by half again and search until a
split point is found or there is none to be found.
Otherwise search in the second half, in this case, a
split point is affirmatively existing and will be found.

 Actually during the search, an indicator called index is
created and returned after the binary search iteration to
instruct subsequent executions, which determines the final
result of text node splitting.

So far, the whole idea and all the details about CIP
algorithm have been thoroughly covered. In next section, the
use of CIP algorithm for a project will be presented.

IV. EXPERIMENT AND TEST

Having gone through CIP design and implementation
model, it is high time to bring the model into reality. As it is
mentioned before, CIP is a client-side algorithm. So the
experimental environment is based on client-side. More
specifically, CIP is programed with JavaScript and runs on
various browser platform. In this section, the running test of
CIP algorithm and comparison with some other paging
algorithm are presented.

For the sake of simplicity, our experiment didn’t involve
any specific CSS effects. The performance of CIP is
evaluated in Google Chrome 23.0.1. The platform is a
3.00GHz Intel Dual-Core machine running Windows 7
premium with 4GB RAM. The test set is a HTML page of
96KB file size with 3524 nodes. The loading time, the
number of nodes after splitting, and the correctness are
adopted as measurements of CIP performance. To be more
scientific, the measurements are averaged over ten runs.
There are still really very few client-side paging algorithms
widely-used in browser. Thus in this experiment, a quite
famous paging algorithm from [6] is set as the experimental
control group. The results are provided in the following table.

TABLE I. PERFORMANCE OF DIFFERENT PAGING ALGORITHMS

Measurements

Node numbers after paging Loading time/ms Overflow

CIP 3960 1620 No

[6] 3964 6210 Yes

As it shows in the table, CIP performs much better than
the famous paging algorithms chosen, in both the speed and
user experience area.

V. CONCLUSION

This paper presents a client-side paging (CIP) algorithm
that can intelligently detect when and where is most
appropriate to split a large-scale HTML document. Much of
the attention is paid to two co-dependent procedures: self-
corrective splitting in element node level and self-adaptive
splitting in text node level, which remarkably contribute to
the intelligence of CIP algorithm. Moreover, CIP is applied
to split a huge HTML document into regularly compacted
pages that make an interactive and well-paged e-book. In
addition, related experimental results are provided to explain
the advantages of CIP.

ACKNOWLEDGMENT

This research is supported by the Humanity and Social
Science Research Foundation of Ministry of Education of
China, 2010 (No. 10JDGC015).

REFERENCES
[1] Joaquín Cubillo, Sergio Martín, and Manuel Castro, “New

technologies applied in the educational process,” Proc. IEEE Symp.
Global Engineering Education Conference (EDUCON), IEEE press,
May. 2011, pp. 575-584, doi: 10.1109/EDUCON.2011.5773195.

[2] Zhu Jihong and Yu Yonghai, “The influence of personal reading
experience on the design of digital books,” Proc. IEEE Symp.
Management and Service Science (ICMSS), IEEE Press, Oct. 2009,
pp. 1-2, doi: 10.1109/ICMSS.2009.5301441.

[3] Wikipedia contributors, “HTML5,” Wikipedia, The Free
Encyclopedia, http://en.wikipedia.org/wiki/HTML5, 2011.

[4] Wikipedia contributors, “Depth-first search,” Wikipedia, The Free
Encyclopedia, http://en.wikipedia.org/wiki/Depth-first_search, 2010.

[5] National Institute of Standards and Technology contributors, “Binary
search,” NIST, http://xlinux.nist.gov/dads/HTML/binarySearch.html.

[6] github contributors, “Columnizer-jQuery-Plugin,” adamwulf, github,
https://github.com/adamwulf/Columnizer-jQuery-Plugin/, 2012.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0642

