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Abstract—In order to solve the problem of large range of target 
motion and targets mutual interference in Two-dimensional 
Cross-Moving Motion Simulation System with Multiple 
Objects, a multi-objective system is designed, which consists of 
a number of independent two-dimensional motion simulation 
systems, and an error measuring compensation program is 
proposed, which can meet the accuracy requirements. Three-
dimensional position coordinates of the space measured feature 
points are got by two theodolites which is based on triangular 
intersectional measuring method and the experiment is 
designed by the best measurement area which is obtained 
through the uncertainty analysis. The position accuracy of the 
measured feature points can be determined by simulation. The 
movement reference coordinate system can be set up according 
to the three-dimensional position data of the measured feature 
points and the spatial position error can be calculated by 
coordinate system transformation. RBF neural network is used 
to establish the error compensation model which is finally 
validated. Experimental results of actual system indicate that 
the program can be well applied to the Two-dimensional 
Motion Simulation System for spatial position error 
measurement and compensation. The accuracy requirements 
of the system can be satisfied after compensation. 

Keywords-multiple objects; two-dimensional cross-moving 
motion; triangle intersectional measurement; RBF neural 
network; spatial position error compensation 

I.  INTRODUCTION 

The target motion simulation system can provide 
comprehensive test and physical simulation for the subjects 
through reproducing the trajectory of the target and 
simulating the motion features of the target. A two-
dimensional multiple-target motion simulation system is 
composed of several two-dimensional single target motion 
systems. And this system can not only provide the motion 
simulation of multiple targets, but also resolve problems 
such as the small scope of target motion, independent 
motion regions of the targets, etc. In view of these 
difficulties of high positioning precision for the target points 
in the space and the unification of multiple-target motion 
reference coordinate system, a set of methods of error 
measuring compensation are designed in this paper, which 
are based on the triangular intersectional vision 
measurement principle and the RBF neural network theory. 

The paper, at first, studies the triangular intersectional 
measurement method, and makes a model of measurement 

method with two theodolites. Some factors affecting 
measurement precision are analyzed and the designed 
experiment was simulated with MATLAB to determine 
whether the precision of the three-dimensional coordinates is 
satisfied with the requirements. Then several feature points 
of which the ideal positions were known in the motion plane 
of each target are chose, and distributed reasonably on the 
whole motion plane of the target. The target motion 
reference coordinate was set up by acquiring all the three-
dimensional coordinates of all the feature points and the 
error of the system was deduced by using the concept of 
coordinate system transformation. Finally, the RBF neural 
network was used to build error compensation model and 
check the model. And then the model was implanted into the 
control software of the host computer to compensate for the 
spatial position errors of the system. After the compensation, 
the multiple-target system has a unified motion reference 
coordinate system and a high precision of positioning. 

II. THE ANALYSIS OF THE SOURCE OF THE SYSTEMATIC 

SPATIAL ERROR 

cO
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cY

cZ

α β γ

 
Fig.1 Motion simulation system diagram 

The principle of the two-dimensional multiple-target 
motion simulation system is shown in Figure 1. The system 
consists of several independent two-dimensional single target 
motion systems and the targets have their own independent 
motion planes which parallels to each other. Therefore the 
problem of the mutual interference with targets’ motion 
when these targets are designed on a same motion plane can 
be resolved. Moreover, the structure is convenient to increase 
or decrease the number of motion targets, offering the system 
a strong extendibility. 

The major problem of this structure, which is 
unavoidable, was that the nonlinear error caused by the 
transmission or implementation mechanism, results in the 
disunity of motion coordinate systems of multiple targets and 
the precision cannot reach the requirements. To ensure that 
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the multiple motion targets on the image plane of the 
imaging system has the same two-dimensional motion 
reference coordinate system, this paper researched a set of 
error measuring compensation methods that meet the 
required precision by combining the triangular intersectional 
vision measurement principle and the RBF neural network 
theory. 

III. THE ERROR MEASURING METHOD OF THE 

SYSTEMATIC SPATIAL POSITION 

α β

γ

θ
b

 
Fig.2 Triangle intersectional measuring principle diagram 

 
Fig.3 Measuring uncertainty simulation 

Two theodolites are used to measure the three-
dimensional coordinate of the spatial point with the 
triangular intersectional method[1]. The measuring principle 
is shown in Figure 2. 

In the figure, two theodolites whose optical axes of 
measurement at the same line are put at point O and point B 
respectively. Supposed that ( , , )A x y z  is a point in the 

measured space, and '( ', ', ')A x y z  is the projective point of 
point A on the XOY plane in the coordinate space for 
measurement, according to the triangular sine theorem, the 
measuring elements (L, the spacing of the theodolites, 
and , ,α β γ , measured spatial azimuths) and the spatial 

coordinate of the measured point ( , , )A x y z satisfy: 

( )

( )

( )

sin cos
'cos

sin

sin sin
'sin

sin

sin tan
' tan

sin

L
x OA

L
y OA

L
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β αα
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
= = +

 = = +

 = =

+

      (1) 

In Formula (1), the ranges of variables are: 
0 180α = ° ， 0 180β = ° , 90 90γ = − ° + ° . 

The Analysis of Factors Affecting Precision [2] 

The uncertain degrees of the measured horizontal and 
vertical angles in the two theodolites A, B are defined as 

, , ,U U U Uα β γ θ  respectively, the measuring uncertain degree 

of baseline L as LU , the uncertain degree of the spatial 

feature point ( , , )A x y z as AU , and the measuring uncertain 

degrees of coordinate components as , ,x y zU U U . 

As , , , , LU U U U Uα γ β θ are mutually unrelated, so , ,x y zU U U , 

and normally they satisfy Uα =Uβ =Uγ . It can be acquired 

by seeking partial derivatives of the three equations in 
Formula (1) and based on the principle of uncertain degree 
combination that: 

2 2 2 2 2 2 2
1 2A x y z LU U U U e U e Uα= + + = +  (2) 

In which: 
2 2 2 2 2

2 2
1 4 2

2 2 2 2 2
2
2 2 2

sin sin 1 sin ( ) (tan cos )

sin ( )cos

sin (1 tan )

sin ( )

e L

x y z
e

L

α β α β γ γ
α β γ

β γ
α β

  + ⋅ + + ⋅ +  =
 +


+ + ⋅ + = = +
    Supposed that the precision of the theodolite is 2′′ , the 
uncertain degree of the measuring angle of the theodolite 
will be U U Uα β γ= = 2 2 (3600 180)radπ′′= = × ; the 

uncertain LU of L can be simplified 

as LU L Uα= ⋅ 2 (3600 180)Lπ= × . As known from Formula 
(2), if other measuring factors are unchanged, the systematic 
error is maximal when γ  reaches the maximum. Therefore, 
to judge the feasibility of the measuring method, this system 
only need to draw the uncertain degrees of position 
measurement of the measured feature points when they are 
distributed at the top or the bottom of the target motion scope. 
With the simulation analysis of MATLAB, the uncertain 
degrees of the three targets are acquired as shown in Figure 3. 
Obviously, the measuring uncertain degrees of the three 
targets are all less than 0.8mm, satisfying the measuring 
precision requirements of the measured system. 

IV. THE CALCULATING METHOD OF THE SYSTEMATIC 

SPATIAL POSITION ERROR 

The motion reference coordinate system can be built by 
using the three-dimensional coordinates of the measured 
feature points in the former section. According to the 
coordinate system transformation principle, the spatial 
position error of the measured point can be acquired by 
transforming the three-dimensional coordinates of all 
measured feature points in the measuring coordinate system 
into the image plane coordinate system with the medium of 
motion reference system. 
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A. The Establishment of the Motion Reference Coordinate 
System 

When the system is in motion, the choice of coordinate 
system is very important, and the given quantity of the 
target position is closely related to the two-dimensional 
motion reference coordinate system defined by the system. 
Therefore, this system needs to choose an optimal reference 
plane of the target motion to establish the systematic motion 
reference coordinate system and transform the three-
dimensional position coordinates of the measured feature 
points in the measurement coordinate system into the above-
mentioned coordinate system. To ensure the reliability and 
precision of the acquired two-dimensional target motion 
reference plane, this paper takes the following steps: 

(1) Set the minimal number minn of the three-
dimensional coordinate points necessary to fit the plane and 
the maximum permissible error maxu , to ensure the acquired 
plane is reliable and requires the precision. 

(2) Acquire the target motion plane by using the 
regression analysis according to the three-dimensional 
coordinates of the measured points. 

(3) Acquire the distance from the measured points to 
the fitting plane, and remove some coordinate points which 
are far from the plane on the premise of ensuring the 
remaining number of coordinate points minn n> . 

(4) Refit the target motion plane by using the 
remaining measured points. 

(5) Acquire the uncertain degree uδ of the plane degree 
error of the refitting plane to judge whether it is within the 
maximum permissible error scope of the fitting plane. If 

maxu uδ > , then repeat step (3), (4) and (5). 
(6) Choose a plane using more measured points and 

having smaller uncertain degree uδ  as the two-dimensional 
target motion reference plane from several fitting planes. In 
order to fit a line l , choose some points with smaller 
distance to the plane. Then define the intersection of the 
seeker or the optical axis of the other precision instrument 
and the fitting plane as the origin cO of the coordinate system, 
in which the pointing direction of the directional vector of 
l serves as X-axis, and the pointing direction of the plane 
normal vector as Z-axis. According to the right hand rule, the 
systematic two-dimensional motion reference coordinate 
system c c c cO X Y Z is established, of which plane XOY is the 
plane of this two-dimensional motion reference. 

B. The Transformation of Coordinate System and the 
Calculation of the Spatial Position Errors 

uY

uX

wX

wY

wZ
cZ

cX

cY

 
Fig.4 Coordinate transformation and error calculating 

This system mainly achieves the control of two-
dimensional target motion and cannot directly compensate 
for the error which is vertical to the target motion plane. 
Therefore, the system needs to be transformed to the two-
dimensional motion reference plane. In this section, firstly, 
the measured three-dimensional position coordinate point is 
transformed into the two-dimensional motion reference 
coordinate system by rotation and translation. Then the error 
of the system is acquired in the way of projection, as shown 
in Figure 4. 

(1) Transformation from the Measurement Coordinate 
System to the Two-dimensional Motion Reference 
Coordinate System 

The coordinate of the spatial point P in the measuring 
coordinate system is set to be ,( , )w w w wP x y z , and its 

coordinate in the two-dimensional motion reference 
coordinate system to be ( , , )c c c cP x y z . Then the 
transformation relationship is as follows: 

w cP R P T= +                                  (3) 
In which: R is the rotation matrix and T is the 

translation vector. 
The unit normal vector of the fitting two-dimensional 

motion reference plane in the measuring coordinate system 

w w w wO X Y Z which can be acquired through the former step is 

zn , the unit directional vector of the fitting line l is 

xn .Then through the cross product, the unit vector of Y-axis 
is acquired as: 

y x zn n n= ×                                  (4) 

Thus the rotation matrix is constructed: 
[ , , ]x y zR n n n=                               (5) 

The position vector of the two-dimensional motion 
reference coordinate system wO is set to be: 

( , , )T
x y zO o o o=                             (6) 

Then the vector T is translated to satisfy T O= . 
Through these, the coordinate transformation relationship of 
the spatial point P from the measuring coordinate system to 
the two-dimensional motion reference coordinate system is: 

[ , , ]
c w x

c x y z w y

c w z

x x o

y n n n y o

z z o

     
     = +     
          

             (7) 
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(2) The Transformation from the Two-dimensional 
Motion Reference Coordinate System to the Image Plane 
Coordinate System 

The plane equation of the two-dimensional target 
motion reference plane is set to be: 

0Ax By Cz D+ + + =                            (8) 
The coordinate of the point projective on the plane, 

which is the spatial point ( , , )c c c cP x y z in the two-
dimensional motion reference coordinate system, 
was ( , , )s s s sP x y z . According to the projection principle 
from spatial point to the plane, it is acquired that: 

0

c s c s c s

t t t

x x y y z z

A B C
Ax By Cz D

− − − = =

 + + + =

                      (9) 

Through Formula (9), it can be acquired that the 
position of the spatial point ( , , )c c c cP x y z in the two-
dimensional motion reference coordinate system and its 
imaging position ( , )u ux y in the image plane coordinate 
system satisfy: 

c
u s

c
u s

c

x
x x

W y U
y y

z

 
     = = +           

                   (10) 

In which: 
2 2

2 2 2 2 2

1 B C AB AC
W

A B C AB A C BC

 + − −
=  + + − + − 

， 

2 2 2

AD
U

BA B C

 
= −  + +  

 

Through Formula (7) and Formula (10), it could be 
acquired that the relationship between a spatial feature 
point ( , , )w w w wP x y z  in the measuring coordinate system and 

its coordinate ( , )T
u u uP x y in the image plane coordinate 

system can be expressed as: 

w
u

w
u

w

x
x

W R y W T U
y

z

 
   = + +       

                 (11) 

The given position coordinate of the spatial point P is 
set to be ( , )t t tP x y , then the position error ( , )t tx tyE e e of point 

P satisfy: 

w
tx t u t

w
ty t u t

w

x
e x x x

W R y W T U
e y y y

z

 
         = − = − + +                  

    (12) 

Through Formula (12), the position error of the sampling 
points in the motion reference plane of each target can be 
acquired respectively. 

V. THE ERROR COMPENSATING METHOD OF THE 

SYSTEMATIC SPATIAL POSITION 

Through measuring the actual system, it was found that 
the acquired spatial position error is highly nonlinear and 

hard to be described by accurate mathematic model, so it is 
difficult to conduct the accurate error compensation. The 
neural network has a strong ability of nonlinear mapping. 
Through learning, the neural network can precisely set the 
weights and the threshold matrix between the network 
structure and the neurons. Thus a nonlinear model reflecting 
the features of the error system can be acquired [3~4]. In this 
section, the compensation for the spatial position error of 
the multiple-target simulation system is realized by 
establishing error compensation model based on the RBF 
neural network and transforming it into the error 
compensation module in the controlling software of the host 
computer through the acquired spatial position error of the 
targets in the former section. 

A. The Determination of the Error Compensation Model of 
the RBF Neural Network [4,5] 

R
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
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Fig.5 Error compensation model based on RBF neural network 
The error compensation model based on the RBF 

neural network is shown in Figure 5. The input signal of this 
model is defined to be: 

1 2( , , , )nP P P P=                             (13) 

In which: ( , )i i iP x y= , ,i ix y are respectively the theoretical 
position coordinates of the measured feature points 
numbered i ,  and the signal source nodes transmit these 
input signals to the hidden layer. 

There are four kinds of commonly used basis functions 
in the hidden layer: multiple quadratic functions, thin spline 
functions, inverse multiple quadratic functions and Gauss 
functions. In this paper the most commonly used Gauss 
function is adopted as the basis function to realize the 
nonlinear mapping ( )iP R P→ . Gauss function is simple in 
expression forms, radial symmetry, good in smoothness and 
analyticity, and convenient in theoretical analysis. Its 
expression is shown as Formula (14): 

2

2

1
( ) exp[ ( )], ( 1, 2, )

2
i

i
i

P c
R P i q

σ
−

= − =      (14) 

In the formula: iR is the output of the i-st hidden node; ic is 
the center vector of the Gauss function of the i-st neuron in 
the hidden layer, which has the same dimensions with P; 

iσ is the normalization constant of the i-st node in the 
hidden layer, i.e. the i-st perceived variable, which 
determines the width of the center vector of the basis 
function; q is the number of the perception units, i.e. the 
number of the nodes in the hidden layer; iP c− shows the 

distance between P and ic . 
 The output of the hidden layer nodes ranges from 0 to 
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1, and the closer the input sample is to the node center, the 
greater the output value is. When iP c= , 1iW = . 

The input signal of the model is define to be: 

1 2( , , , )nE E E E=                         (15) 

In which: ( , )i xi yiE e e= , ,xi yie e are respectively the spatial 

position errors of the measured feature point numbered i , 
then the linear mapping relationship of ( )i kR P E→ from the 
hidden layer to the output layer is: 

1

( ), ( 1, 2, , )
q

k ki i
i

E w R x k n
=

= =              (16) 

In which: kiw is the connection weight between the i-st basis 
function and the k-st output node, whose purpose is to solve 
the problem of unidentifiable sample timing by the network 
in the previous training samples of neural network. 
According to the rule of the “bigger near and smaller far”, 
the weight factors give different training precision for 
samples of different timing in the process of training. 

B. The Learning Process of the RBF Neural Network 

In this model, ,i ic σ and kiw are unknown variables, 
which need to be determined through learning. The learning 
of the RBF neural network is mainly divided into two stages, 
i.e. the unsupervised learning stage and the supervised 
learning stage. At the first stage, ic and iσ are determined 

through input samples, while at the second stage, kiw is 
acquired by using the least-squares principle after the 
determination of parameters in the hidden layer. The 
specific methods are as follows: 
(1) The Unsupervised Learning Stage 

K-means clustering algorithm is adopted to adjust the 
center vector, i.e. the center vector ic  of the optimal radial 
basis function is acquired through sub-families. The steps of 
the algorithm are as follows: 

1) Set the initial center vector (0)ic of each hidden 

node, the learning rate (0)β (0 (0) 1)β< < and the 
threshold ε of the decision to stop calculation. 

2) Calculate the node with minimal distance. 
( ) ( 1) ,1

( ) min ( )
i k i

r i

d k P c k i m

d k d k

 = − − ≤ ≤


=
           (17) 

In the formula, k is the sequent number of the sample; r is 
the sequent number of the hidden node in the case that the 
center vector ( 1)ic k − is nearest to the input sample 

distance kP . 
3) Adjust the center. 

( ) ( 1),1 ,

( ) ( 1) ( )[ ( 1)]
i i

r r k r

c k c k i m i r

c k c k k X c kβ
= − ≤ ≤ ≠

 = − + − −
   (18) 

In the formula, the learning 
rate 1/ 2( ) ( 1) /(1 int( / ))k k k qβ β= − + ; int( )⋅ indicates the 

rounding operation of ( )⋅ . 
4) Determine the quality of clustering. 
Step 2) and 3) are repeated over all the samples k until 

the following formula is satisfied. 

2

1

( )
q

k i
i

J P c k ε
=

= − ≤                          (19) 

(2) Supervised Learning Stage 
After ic  is determined, the acquisition of kiw becomes 

the linear optimization problem and its learning algorithm is: 

( 1) ( ) ( ) ( ) / T
ki ki k k iw k w k Y Y R P R Rη+ = + −         (20) 

In the formula, 1 2[ ( ), ( ), ( )]T
qR R P R P W P=  , η  is the 

learning rate, normally whose value is 0 1η< < , kY  refers to 
the actually measured error of the spatial position, i.e. the 
expected output, and kY refers to the value of the output error 
acquired by using this model. In this way, the compensation 
for the spatial position error of the target can be realized by 
using this model.  

C. The Error Contrast of before and after the 
Compensation 

 

 

 
Fig.6 Error compared before and after compensation 

Before the model is applied to the compensation for the 
simulation system of two-dimensional multiple-target 
motion, the compensation effect of the model needs to be 
tested to ensure that the compensation model satisfies the 
requirements of the system. In this section, one target is 
taken as an example to make the explanation. At first, the 
model of spatial error compensation of the target is acquired 
by randomly choosing 120 points from the 145 measured 
feature points of this target, taking their theoretic coordinate 
values as the input of the training neural network, and taking 
the value of the corresponding spatial position error as the 
output for training neural network. Then the spatial position 
errors of all the measured feature points after the 
compensation are acquired by utilizing the trained model. If 
the simulation system of two-dimensional multiple-target 

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France. 
© the authors 

0651



motion is supposed not to have controlling errors, and the 
measurement of feature points not to have measuring errors, 
then the compensation result after the compensation by 
using this method is shown in Figure 6 and the comparison 
of the errors of before and after the systematic compensation 
is listed in Table 1, which shows that after modeling for 
compensation by adopting the RBF neural network and on 
the premise of not considering the controlling error and the 
measuring error, the systematic error of the compensated 
part can be made less than 0.4mm, which is far less than the 
systematic error before the compensation. Therefore, the 
compensation effect is very obvious. 

According to the above analysis, the model of error 
compensation satisfies the requirements of the system. 
Therefore, this model can be implanted into the control 
software of the host computer to realize compensation for 
the spatial position error of the simulation system of two-
dimensional multiple-target motion through correcting the 
input quantity of the controller. Through measuring the 
compensated actual system, it can be acquired that when the 
range of single axis motion is greater than 2m, the 
maximum static positioning error of the system is less than 
2mm, which satisfies the technical requirement. 

TABLE I.  ERROR COMPARED BEFORE AND AFTER COMPENSATION 

 
Number 

of  
targets 

The max 
error  
berofe  

compensation
(mm) 

The max 
error after 
compensati

on 
(mm) 

The average
error before
compensatio

n 
(mm) 

The average 
error after 

compensatio
n  

(mm) 
Target 

1X 
29.20 0.31 6.77 0.05 

Target 
1Y 

1.95 0.18 0.69 0.01 

Target 
2X 

32.61 0.25 11.35 0.07 

Target 
2Y 

1.99 0.09 0.95 0.01 

Target 
3X 

49.94 0.39 14.76 0.09 

Target 
3Y 

2.79 0.03 1.13 0.01 

VI. CONCLUSION 

This paper has analyzed the features and the source of the 
spatial position errors in the two-dimensional multiple-target 
motion simulation system composed by several independent 
and mutually parallel two-dimensional single-target motion 
systems, then deigned a set of error measurement and 
compensation methods that can satisfy the precision of the 
system by combining the triangular intersectional vision 
measurement principle and the RBF neural network theory: 
the triangular intersectional measurement of points in space 
is realized by using two theodolites, and the spatial position 
error of the measured feature points is calculated through the 
principle of the coordinate system transformation; finally, by 
using the RBF neural network to establish the error 
compensation model and implanting the model into the 
control software of the host computer, compensation for the 
error of the actual system is realized. According to the result 
of the measurement in the actual system after compensation, 
the maximum static positioning error of the system is smaller 
than 3mm. Therefore, a unified two-dimensional motion 
coordinate system of multiple targets with high positioning 
precision for the multiple-target motion simulation system is 
realized when adopting the structure of which this paper 
describes. 
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