
Deadlock Detection Based on the Parallel Graph Theory Algorithm

Xiaorui Wang, Qingxian Wang, Yudong Guo
China National Digital Switching System Engineering

and Technological Research Center
Zhengzhou, China

henanwxr@sina.com

Jianping Lu
Chongqing Communication Institute

Chongqing, China
lu8311@yahoo.cn

Abstract—Deadlock detection and release is an important
means to maintain the concurrency of task in operating system,
the relationship between system process and resources is
usually described by means of resource allocation graph, the
core of the deadlock detection is to determine whether there is
a loop in the resource allocation graph and simplify the
resource allocation graph. If using the traditional serial
method to process the resource allocation graph, it will cause
delay in the system even impossible to unlock in condition of a
large number of processes exist in the system. This paper
introduces the parallel processing of graph for deadlock
detection, including two aspects: using the transitive closure
algorithm on SIMD-CC model for loop detection in resource
allocation graph, using the parallel P-BFS algorithm for
Simplification of resource allocation graph. By parallel
processing on the serial detection process, efficiency of the
system in dealing with deadlock has been improved.

Keywords-deadlock detection; parallel computing; resource
allocation graph; loop detection; SIMD-CC

I. INTRODUCTION

The concurrent execution of tasks in modern operating
systems can improve the utilization rate of resources, but it
may also lead to the occurrence of deadlock. If the deadlock
occurs it will waste a lot of system resources and even cause
the system to crash, therefore the detection and handling
mechanism of deadlock is the important guarantee to
maintain the collaboration between the multitasking[1-5].

In graph theory, graph is constituted by a number of the
given vertices and the edges that connecting the vertices, this
graphic is usually used to describe certain relations between
things, vertices represent things, edges represent that it has a
relationship between the corresponding two things. Although
many graph theory problems are easy to express, but they are
difficult to be solved. It has proven that there are quite a lot
of graph theory problems are NP-Complete problems. For
example: the Hamiltonian path problem, the graph
isomorphism problem, the graph coloring problem, and so
on[6-10].With the development of VLSI(Very Large Scale
Integration) technology and the emergence of parallel
computers, it provides a new way for the fast solution of the
problem of graph theory[10]. Using multi-processor systems
to solving the problem in graph theory has played an
important role in the application of scientific and engineering
[11-15].

Deadlock detection usually use the concept graph theory,
such as digraph, undigraph, connected sub-graph, adjacency

matrix, etc.. Graph theory algorithms have been extensively
studied in the multi-processor system, for example: parallel
searching of the graph, transitive closure of the graph,
connected components of graph, the shortest path of the
graph, minimum spanning tree of the graph. If the parallel
searching can be applied into the deadlock detection, the
efficiency of the deadlock detection will be greatly improved.
In this paper, the relationship between the system processes
and the resources are described by RAG(Resource
Allocation Graph). In order to improve the efficiency of the
deadlock detection, serial processing for loop detection of
RAG and RAG simplifying is done by parallel processing
during the course of deadlock detection.

II. DESCRIPTION OF THE DEADLOCK

A. Deadlock definition

The so-called deadlock refers to the concurrent processes
waiting for the resources owned by others, and these
concurrent processes don’t release their own resources
before they getting resources from others, therefore resulting
the state that each of the processes wants to get the resources
but they can’t, so that the concurrent processes can’t
continue to move forward.

Generally, the deadlock can be described as: there are
concurrent processes nPPP ,...,, 21 , they share the

resources mRRR ,...,, 21),0,0(mnmn ≥>> .

Wherein each)1(niPi ≤≤ has the

resources jR)1(mj ≤≤ until there is no remaining

resources. Meanwhile, each iP requests to get

kR)1,(mkjk ≤≤≠ in the premise of not

release jR , resulting the mutual occupation and waiting for
each other of the resources. This group of concurrent
processes will stop to push ahead and fall into a permanent
state of waiting in case there is no external drive.

The system state are as follows when the deadlock taking
place: 1) at least two processes involved in the deadlock. 2)
at least two of the processes involved in the deadlock already
hold the resources. 3) all the processes involved in the
deadlock are waiting for resources. 4) processes involved in
the deadlock is a subset of all the processes in the current
system.

For example, there is a printer 1R and a card reader 2R ,

the process 1P occupies printer 1R , the process 2P occupies

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0709

card reader 2R . If 1P requests to get card

reader 2R , 2P requires to get the printer 1R , then it will be fall

into the state of deadlocked, as shown in Figure 1.

Figure 1. schematic diagram of deadlock

B. The cause of deadlock

Essentially, there are two reasons for the generation of
deadlock: 1) competition for resources, multiple processes
competing for resources but these resources can’t meet their
needs at the same time. 2) The promoting order of processes
are improper, that is the order that these processes apply and
release resources are improper. Further analysis, there are
four necessary conditions to produce the deadlock:

1) Mutually exclusive using of resources, one resource
can only be used by one process each time.

2) Resources can’t be deprived, resources owned by the
occupants can’t be forcibly seized from the applicants, and
the resources can only be released voluntarily by the
occupants.

3) Requesting and holding, the process which applying
for a new resource hold the possession of the original
resource.

4) Loop waiting, there exists a waiting queue

},...,,{ 21 nPPP for the processes, wherein 1P waits the

resource occupied by 2P , 2P waits the resource occupied

by 3P ,…, nP waits the resource occupied by 1P ,so it forms a
waiting loop of processes.

Generally, the solution of the deadlock can be divided
into three categories: prevention, avoidance, detection and
recovery. Deadlock prevention is a static strategy, it
determines the resource allocation algorithms in period of
system design, it ensures no deadlock occurring by limiting
requests for resources of the concurrent processes. The
specific approach is to destroy one of the four necessary
conditions of deadlock, making the necessary conditions of
deadlock are not satisfied at any time during the execution of
the system. Deadlock avoidance refers to make predictions in
advance according to the usage of resources when these
resources are allocated by system, thereby avoiding the
occurrence of deadlock. Deadlock avoidance is a dynamic
strategy, the most representative algorithm for deadlock
avoidance is the Banker's Algorithm. Deadlock detection and
recovery refers to allow the generation of deadlock and the
operating system takes remedial measures after the
emergence of deadlock. The operating system has special
agency and the agency is able to detect the location and
cause of the deadlock when a deadlock occurs. It recovers
the concurrent processes from the state of deadlock through

damaging necessary condition for a deadlock with the help
of external force.

It is a difficult thing that achieve the purpose of
excluding deadlock through the means of prevention and
avoidance. Deadlock detection and recovery will be able to
find deadlock and recover from deadlock and it needs not
have to spend much of execution time. Therefore, the
approach of deadlock detection and recovery is used for
excluding deadlock in most of the actual operating system.

III. DEADLOCK DETECTION AND HANDLING

A. Process description based on RAG

The digraph is able to descript the state of process
deadlock accurately, the RAG can be defined as a two-
tuples:),(EVRAG = , wherein V is the set of vertices,

E is the set of directed edges.
Set of vertices can be divided into two parts:

(1)),...,(21 nPPPP = is the set composed by all

processes within the system, each iP)(PPi ∈ represents a

process.(2)),...,(21 mRRRR = is the set composed by

all resources within the system, each iR

)(RRi ∈ represents a class of resources. Each edge in the

set of edge is an ordered pair >< ii RP , or >< ii PR , .

If ERP ii >∈< , , then there exists a directed edge from

iP to iR , it represents that iP requesting one resource in

class of iR ,and it’s waiting to be assigned currently. If

EPR ii >∈< , , then there exists a directed edge from iR

to iP , it represents that the one resource in class iR has been

allocated to the process iP .The directed edge >< ii RP , is

called a request edge, and the directed edge >< ii PR , is
called an allocation edge.

The circles represent processes and the boxes represent
each type of resource in RAG. There may be multiple

instances of each type of resource iR , the instances of each
resource can be expressed by the dot in the box. The request
edge is a directed edge that from process to resource, it
represents that the process applies for a resource, but the
process is waiting for the resource.

Figure 2. diagram of resource allocation

The allocation edge is a directed edge that from resource
to process, it represents that one resource has been allocated
to a process, as shown in figure 2.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0710

B. Deadlock detection theorem

It is assumed that a set of processes using a set of
resource and the state of the system is S at a certain time,
RAG is the graph corresponding to state S then:

1) If it doesn’t appear any loop in RAG, then S is in non-
deadlocked state, or said the security state. 2) If it appears
loop in RAG, and each resource in the loop is single-unit
resource(only one allocation unit), then S is in a deadlock
state. In other words, the loop that constituted by single-unit
resources is the necessary and sufficient condition of
deadlock for state S. 3) If it appears loop in RAG, but not all
of the resources in this loop are single unit resource, then the
S is not necessarily in the deadlock state. In other words, the
loop that only constituted by part of single-unit resources is a
necessary but not a sufficient condition of deadlock for state
S.

The approach of RAG Simplification are as follows:

 1) Find a non-isolated node iP which has only allocation
edge, or although this node has request edge but the request
edge can be immediately converted to allocation edge(that is
the request can be satisfied immediately), then eliminate all

of directed edges of iP to make it to be the isolated

node(that is release all the resources owned by iP).

 2) Assume that kR is a certain resource node which

released by a process node iP , than the request edge of

another node jP requests to kR : kj RP → can be
converted into allocation edge, that is the
resource kR released by iP can be allocated to process jP .If

jP has only allocation edges after a series of conversion,

then then making jP to be the isolated node.
 3) After a series of simplification, if all the directed

edges in RAG can be eliminated and all process nodes are
made to the isolated nodes, then the RAG is said to be
completely simplified, otherwise this RAG is not completely
simplified. Obviously, the RAG that can’t be simplified
completely must has loops.

Figure 3. loop and deadlock in RAG

Deadlock theorem description: the necessary and
sufficient condition that state S is in deadlock state if and
only if the RAG of S can’t be simplified completely.
Deadlock with loop and deadlock without loop in RAG are
shown as (a) and (b) in Figure 3.

IV. PARALLEL PROCESSING OF DEADLOCK DETECTION

A. Analysis of parallel processing for RGA

In computers,),(EVG = represents the data structures
that used by RAG, there are usually adjacency matrix and
adjacency list. However, it is more convenient using the
adjacency list when searching edges in the graph.

1) Parallelization of loop detection in RAG
The process of deadlock detection has been mentioned in

section 2.2, firstly it needs to determine whether there exists
a loop in the given RAG, the problem can be solved quickly
with the help of transitive closure algorithm of graph,
transitive closure of directed graph expresses the reachability
between each vertex. Transitive closure of graph is defined
as follows:

),(EVG = represents directed graph and
nnijaA ×=)(

represents adjacency matrix, the transitive closure of A
is

nnijbA ×
+ =)(and ijb =1 iff there exists a path between

vertex i to vertex j, as follows:

Figure 4 shows a directed graph, the adjacency matrix of

the graph and its transitive closure.
dcba

d

c

b

a

A



















=

0101

0000

1000

0010
dcba

d

c

b

a

A



















=+

1111

0000

1111

1111

Figure 4. adjacency matrix of graph and its transitive closure

It needs to do the operation of matrix multiplication in
the process of transitive closure calculation, the time
complexity of serial algorithm for transitive closure is)(3nO .
An important advantage of parallel computing is the
processing of matrix operation, typical matrix multiplication
comprises[16]: Fox,Systolic,Cannon,DNS,etc.,Therefore it
can take parallelization measures in the course of transitive
closure calculation.

2) Parallelization of simplification in RAG

Figure 5. P-BFS with two processors

In the process of RAG simplification, it needs to search
the graph when eliminating the edges between the processed
and resources. A process is usually associated with multiple
resources (already assigned or been applying), all of the
edges associated with this process can be detected at the
same time taking advantage of the parallel ability of multi-
processor. Therefore, parallel searching can be employed in
the process of RAG simplification, and P-BFS(parallel

else

jtoifrompathaexistingorji
bij

=





=
0

1

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0711

Begin
(1) Add to unit matrix: Par-do A(0,j,j)1, 0≤j≤n-1
(2)A is copied to B: Par-do B(0,j,k) A(0,j,k), 0≤j,k≤n-1
(3)for i=1 to  )1log(−n do

(3.1)CA×B // Call DNS multiplication algorithm, O(logn)
 (3.2)par-do: A(0,j,k) C(0,j,k), B(0,j,k) C(0,j,k), 0≤j,k≤n-1
endfor

End

Begin
(1)for m=3q-1 to 2q do

 for all r in {p, rm=0} par-do
 (1.1) Ar(m)  Ar

(1.2) Br(m)  Br
 endfor
 endfor

 (2)for m=q-1 to 0 do
 for all r in {p, rm= r2q+m} par-do
 Ar(m)  Ar
 endfor
 endfor

 (3)for m=2q-1 to q do
 for all r in {p, rm= rq+m} par-do
 Br(m) Br
 endfor
 endfor

(4)for r=0 to p-1 par-do
 Cr=Ar×Br
 endfor

 (5)for m=2q to 3q-1 do
 for r=0 to p-1 par-do
 Cr=Cr+Cr(m)
 endfor
 endfor
 End

breadth first search) is appropriate. Figure 5 shows the
process of P-BFS with two processors.

B. Parallel algorithms of transitive closure for RAG

Conventions used in this paper: n represents the number
of vertices of graph in),(EVG = , m represents the

number of edges, id represents the degree of vertex in , p
represents the number of processors.

 1) Algorithm principle based on the Boolean matrix
multiplication

Let B=A+I, I represents the unit matrix, B=(b(1)
ij)n×n ,then

if b(1)
ij=1, i=j or there exists directed edge from i to j. That is

the length of directed path is 0 or 1 from i to j.
For B2=(A+I)2=(b(2)

ij)n×n, b(2)
ij=∨k=1~nb

(1)
ikb

(1)
kj, here∨is

the logical symbols or, then b(2)
ij=1, that is the length of

directed path is L≤2 from i to j.
Analogously, Bk=(b(k)

ij)n×n, b
(k)

ij=1, the length of directed
path is L≤k from i to j. Therefor A+=Br (r≥n-1). So it has
total  )1log(−n times of multiplications in :

BB2B4…B  )1log(2 −n = A+.
2）Transitive closure algorithm on SIMD-CC model
n3 processors arranged in a three-dimensional array of

n×n×n, the coordinate of Pr is (i,j,k), there are there registers
A(i,j,k), B(i,j,k) and C(i,j,k), therein r=i*n2+j*n+k,
(0≤i,j,k≤n-1). The initial: A(0,j,k)ajk 0≤j,k≤n-1; The end:
C(0,j,k)is the element of (j,k) in A+. Input: An×n, Output:
Cn×n . Algorithm descripted as in table I.

TABLE I. TRANSITIVE CLOSURE ALGORITHM ON SIMD-CC MODEL

 3）DNS algorithm
 Let r(m)represents the negating of m-th bit of r；{p,

rm=d}represents the set of r(0≤r≤p-1), d is the m-th bit of r
in its binary form. input: An×n, Bn×n; output: Cn×n . Algorithm
descripted as in table II.

C. Parallel algorithm of P-BFS for RAG

It usually has a primary table and sub-table in the process
of parallel computing. The general process of parallel search
is as follows:(1) initially let the primary table empty, then
obtains a certain vertex as the initial search point from the
graph and adds it to the primary table. (2) In any one of the
search process, each processor first sets the sub-table empty,
then selects one vertex to be searched from the primary table,
one or several edges which associated with the vertex are
checked as follow: if the edge connected to this vertex has
not been searched, it will be placed in the sub-table of
corresponding processor. Each sub-table stores some vertices

that will be merged into the primary table, all the sub-tables
will be linked together and added to the primary table at
certain time.

TABLE II. DNS ALGORITHM

In the process of P-BFS searching, the primary table is a
FIFO queue, if a vertex i which is to be searched is selected
from the primary table, the vertex i needs to deleted from the
primary table, then p processors check edges associated with
vertex i and put these vertices that has not been searched into
sub-tables. Vertices to be search are still selected from the
primary table in next search, these sub-tables will be linked
and merged to primary table until the main table is empty,
the searching process stops if these sub-tables are still empty
after they have been linked. According to the above
description, the algorithm flow of P-BFS is shown in Figure
6.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0712

Figure 6. Algorithm flow of P-BFS

V. ANALYSIS OF ALGORITHM COMPLEXITY

Main measures of complexity of parallel algorithm
including: running time t(n), the number of processors p(n),
and the cost c(n), therein c(n)=t(n)×p(n).

1) Complexity of the transitive closure algorithm
It needs to do operation of matrix multiplication in the

process of computing transitive closure, there is  )1log(−n

times multiplication from BB2B4…B  )1log(2 −n to A+,
the time complexity is O(logn) for calling DNS
multiplication algorithm each time. Then: the time
complexity t(n)=O(nn 2log), the number of processors

p(n)=

3n , the algorithm cost c(n)=O(nn 23 log*).
2) Algorithm complexity of P-BFS
Assume that the time-consuming operation including

vertex selection, tables linking and binding, and also assumes
that it need one of these operations when selecting a vertex.
For serial algorithm, there is only one primary table, and
only one vertex which has not been searched is added to the
primary table when checking an associated edge each time.

Assuming)(Vidi ∈ is degree of the vertex, then the
upper bound of searching time of serial algorithm for a graph
is:


=

+=+=
n

i
is nmdT

1

2)1(

The operation of linking and binding takes   1log +p

time after searching each floor of the graph, checking edges
that associated with every vertex takes   1/ +pdi time, there

are totalL layers searching from the starting point in entire

graph, then the searching time pT of P-BFS is:

   

 

  npLpT

npLpd

pLpdT

s

n

i
i

n

i
ip

2log/

2log)/(

)1log()1/(

1

1

+×+≤

+×+≤

+×++=





=

=

So the running time is:

   )1log()1/(
1

+×++
=

pLpd
n

i
i

, the number of

processors is p, and the cost of algorithm is

[   ] ppLpd
n

i
i ×+×++

=

)1log()1/(
1

 .

VI. CONCLUSIONS

In normal course of operation system running, the
operating system needs to constantly monitor the state of the
processes, and detects whether the system generates
deadlock through related operations to RAG, it needs to
relieve the deadlock once the deadlock is detected and
recovery the running of operating system with minimal cost,
for example: restart, undo the process, deprived of resources,
processes fallback, etc.. Take advantage of the parallel
algorithm of graph can quickly complete loop detection and
search for RAG, which will significantly shorten the
response time and improve the continuous running ability for
operation system. It also exists other similar situations that
can make use of the parallel algorithm in the operating
system, such as process trees search, the parent and child
trees destruction, it needs to fully explore these type of serial
process which can make use of the parallel computing.

REFERENCES
[1] Robles-Gomez, A. “A deadlock-free dynamic reconfiguration scheme

for source routing networks using close up*/down* graphs” , Parallel
and Distributed Systems, vol. 22 , no. 10 , pp.1641 – 1652, Oct. 2011.

[2] Chunfu Zhong, Zhiwu Li. “A Deadlock Prevention Approach for
Flexible Manufacturing Systems with Uncontrollable Transitions in
Their Petri Net Models”, Engineering with Computers, vol. 25, no. 3,
pp.269-278,

Sep. 2009.

[3] Keyi Xing, Mengchu Zhou, Feng Wang, Huixia Liu, Feng Tian.
“Resource-transition circuits and siphons for deadlock control of
automated manufacturing systems”, Systems, Man and Cybernetics,
vol. 41, no. 1, pp. 74- 84, Jan. 2011.

[4] Hesuan Hu, MengChu Zhou, Zhiwu Li. “Supervisor design to enforce
production ratio and absence of deadlock in automated manufacturing
systems”, Systems, Man and Cybernetics, vol. 41 , no. 2, pp.201- 212,
Mar. 2011.

[5] Colin S. Gordon, Michael D. Ernst, Dan Grossman. “Static lock
capabilities for deadlock freedom”, TLDI '12 Proceedings of the 8th
ACM SIGPLAN, New York, 2012, pp.67-78.

[6] Skupie n, Zdzis aw, Borowiecki, M. Combinatorics and graph theory,
Poland: Warsaw, 1989, pp.201-247.

[7] W. T. Tutte. Graph theory as I have known it. Oxford University Press,
May. 2012, pp.25-164.

[8] Miklos Bona. A walk through combinatorics: an introduction to
enumeration and graph theory, World Scientific, 2011, pp. 321-456.

[9] Martin Charles Golumbic, Irith Ben-Arroyo Hartman. Graph
theory, combinatorics and algorithms: interdisciplinary applications,
Springer Publishing Company, 2011, pp.112-298.

[10] CHEN Guo-Liang, LIANG Wei-Fa, SHEN-Hong. “RESEARCH
ADVANCES IN PARALLEL GRAPH ALGORITHMS”, Journal of
Computer Research and Development, no. 9, 1995.

[11] TANG Ce-Shan, LIANG Wei-Fa. “Parallel Graph Theory Algorithm”
Press of China Science and Technology University, Oct. 1991.

[12] Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny,
Kurt Keutzer, John Kubiatowicz, et.al. “A view of the parallel
computing landscape”, Communications of the ACM, vol. 52, no. 10,
pp. 56-67, Oct. 2009.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0713

[13] Haoqiang Jina, Dennis Jespersena, Piyush Mehrotraa, Rupak Biswasa,
Lei Huangb, Barbara Chapmanb. “High performance computing
using MPI and OpenMP on multi-core parallel systems”, Parallel
Computing, vol. 37, no. 9, pp. 562–575, Sep. 2011.

[14] Rainer Keller,David Kramer,Jan-Philipp Weiss. Facing the multicore-
challenge: aspects of new paradigms and technologies in parallel
computing, Springer, 2010, pp.45-98.

[15] Jaliya Ekanayake, Geoffrey Fox. “High performance parallel
computing with clouds and cloud technologies”, Cloud Computing,
vol. 34, pp.20-38, 2010.

[16] CHEN Guo-Liang. Parallel Algorithm Design and Analysis, Beijing:
Higher Education Press, Nov. 2002. pp.208-325.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0714

